• Title/Summary/Keyword: Corrugated fiberboard boxes

Search Result 25, Processing Time 0.017 seconds

Improvement of Physical Properties of Low Quality Recycled Corrugated Fiberboard Liners (저급 국산골판지원지의 강도강화방법 연구)

  • Kim, Jong-Kyoung;Ryu, Wun-Hyung;Joo, Sang-Myung;Lee, Hwan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • For both economic and ecological reasons corrugated box manufacturers are seeking to produce acceptably strong boxes while using more recycled paper. This study was to develop hydrophilic coating agents in order to improve overall physical properties of recycled corrugated fiberboard liners. Two coating agents were developed and applied to 'S' corrugating medium. The results showed that compression strength of new liners, named 'S-A' and 'S-B', were increased significantly both standard humidity and high humidity environment and it was as much as 'SK' liner. New developed liners were also economically advantageous since new liners were estimated about one hundred fifty dollars per ton cheaper than SK liner. The study indicated that further work is needed on the coating technology and machine development.

  • PDF

Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure (종이성형구조물의 휨강성에 대한 실험적 연구)

  • Park, Jong-Min;Lee, Myung-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 1999
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was rallied out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiber-boards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

A Study on the Quality of Liner Board Used Corrugated Fiberboard Container of Apples (사과포장용 골판지 라이너원지의 품질에 관한 연구)

  • 하영선;김수일
    • Food Science and Preservation
    • /
    • v.5 no.2
    • /
    • pp.150-153
    • /
    • 1998
  • As strait As a result of the quality research of liner boards used for the national-made corrugated boxes for apples, basis weight of each sample passed its tolerance within 4%. We found that KA, WLK, and SC liner boards showed better in relative bursting strength. SC, WLK, KA, and SK performed better in relative compression strength. WLK201 and KA210 were good for the outside liner, and K2200 was adequate for medium and inside liner. we classified WLK and KA liner boards as A grade and others as C grade.

  • PDF

Prediction Modelings of Ring Crush Strength in Corrugated Base Paper by Humidity Variations (습도조건에 따른 골판지원지의 링크러쉬강도 예측 모델링)

  • Kim, Su-Il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2001
  • In order to optimize designing process of corrugated fiberboard boxes for agricultural products, first of all, compression strength of each liner were experimentally evaluated on the various conditions of relative humidity and analyzed by liner regression analysis. At the 66 percents of relative humidity, IK(imported kraft liner) liner board lost little of its compression strength compared to others. At the relative humidity 93 percents, KA liner board lost its compression strength only 40 percents while SK liner board lost up to 56 percents. From the result of prediction modeling of ring crush strength in various humidity conditions, R square values were ranged from 0.59 to 0.97. At 56 percents of RH or below, R square values were relatively low, but at 66 percents of RH or higher, the values were 0.85 or higher. The significance values were lower than 0.001 at every RH condition. Level of significance of experimented values was about 80 percents of predicted values and R square values were between 0.89 to 0.95.

  • PDF

Improvement of Water Resistant Properties of a Linerboard for Corrugated Fiberboard Box by Coating with Na-alginate (알긴산 코팅에 의한 골판지 상자 제조용 라이너 원지의 수분저항성 증진)

  • Kim, Eun-Jung;Rhim, Jong-Whan;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.762-766
    • /
    • 2006
  • To improve water resistance of paperboard used to manufacture the corrugated boxes, effect of surface coating of the liner- board with Na-alginate was investigated by determining the optimum processing conditions such as a optimum alginate concentration for surface coating, plasticizer content, concentration of divalent cations their immersion times, For the surface coating of the liner-board, 2.5% Na-alginate solution was found to be the optimum concentration, and the concentration of glycerol used as plasticizer was effective when 35% alginate concentration was use was Used Immersion of the alginate coated paperboard for 3 min in a $CaCl_2$ solution improved the water resistance properties. As a divalent cation for the insolubilization of the alginate films, $Cu^{2+}$ was found to be as effective as $Ca^{2+}$. Among the platicizers tested, sorbitol was the most effective in reducing water vapor permeability and water solubility of alginate coated paperboard.