• 제목/요약/키워드: Corrosive gases

검색결과 25건 처리시간 0.021초

선박용 탈기기에 관한 연구 (The Study on the Marine Deaerator)

  • 홍성희;김창수;김두현
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.29-34
    • /
    • 2002
  • As the makeup water entering the boiler feed water cycle usually contains corrosive gases, particularly oxygen and carbon dioxide, so the corrosive gases should be eliminated by a deaerator. While the other domestic companies have made a deaerator for land industrial field, our company has developed and is able to produce a spray & scrubber type deaerator for marine to maintain below the level of 7ppb of dissolved oxygen in the condensate. In this paper, we describe the principle, design technique and experimntal results of the spray & scrubber type deaerator.

  • PDF

선체 구조용 Alloy 625의 용접시 보호가스 조성비에 따른 부식특성에 관한 연구 (A Study on Corrosion Properties of welded Alloy 625 for Ship Structure by Shielding Gases Composite Ratio)

  • 안재필;박경동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.399-406
    • /
    • 2005
  • Alloy 625 is used widely in industrial applications such as aeronautical aerospace, chemical, petrochemical and marine applications. Because of a good combination of yield strength. tensile strength, creep strength, excellent fabricability, weldability and good resistance to high temperature corrosion on prolonged exposure to aggressive environments. High qualify weldments for this material are readily produced by commonly used processes. But all of processes are not applicable to this material by reason of unavailability of matching, position or suitable welding filler metals and fluxes may limit the choice of welding processes. Recently, the flux cored wire is developed and applied for the better productivity in several welding position including the vortical position. In this study. the weldability and weldment characteristics of Alloy 625 are evaluated in FCAW weld associated with the several shielding gases($80\%Ar+20\%\;CO_2,\;50\%Ar+50\%\;CO_2.\;100\%\;CO_2$) in viewpoint of welding productivity. The results of the experimental study on corrosive characteristics of Alloy 625 are as follows; There is no remarkable difference among shielding gases. however they has a striking difference among corrosive solutions by results of distinguished density and time of corrosive solution. Generally, the shielding gases($80\%Ar+20\%\;CO_2$) was superior to the other gases on high temperature tensile and a low temperature impact. but all of the shield gases were making satisfactory results on corrosion test.

석유시추용 인코넬 625강의 FCAW용접에 의한 부식성에 관한 연구 (A Study on Corrosive Characteristics of Inconel 625 for Petroleum Application by FCAW Process)

  • 박경동;안도경;안재필
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.365-369
    • /
    • 2004
  • Recently, Inconel 625 is used widely in offshore processing piping in order to extend the maintenance tenn and improve the quality of anti-corrosion. According to the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to aver $1090^{\circ}C$, in combination with good low- and high-temperature mechanical strength. In general, High quality weldments for this material are readily produced by commonly used processes. in recent years, the flux cored arc welding(FCAW) process is becoming more popular due to higher deposition rate and a better weld quality as compared to the shielded metal arc welding (SMAW) process, at the same time, exhibiting equally good weld metal toughness similar to the SAW process. In this study, the weldability and weldment characteristics(mechanical properties and corrosive environment) of Inconel 625 are considered in FCAW weld associated with the several weld shielding gases($80\%Ar\;+\;20\%\;CO_2,\;50\%Ar\;+\;50\%\;CO_2,\;100\%\;CO_2$) in viewpoint of welding productivity.

  • PDF

가선재의 기계적특성에 미치는 부식환경의 영향 (Effects of Corrosion Environment on Mechanical Properties of Catenary Wires)

  • 김용기;장세기;조성일
    • 한국철도학회논문집
    • /
    • 제5권1호
    • /
    • pp.32-39
    • /
    • 2002
  • As most railways are gradually electrified with modernized electric cars, the demand for catenary wires and their facilities are also increased. Catenary Wires are exposed to the marine area with air-borne salt or severely polluted industrial area with much corrosive emission gases depending on the locations. Corrosion of catenaty wires can make their actual lifetime shorter than that originally designed. Thus, the messenger and ACSR wires, kinds of catenary wire system, were investigated with respect to corrosion, which include new and used ones collected at the field. Tensile strengths and elongations appeared to decrease when the wires were exposed to corrosive environments. The amount of decrease was more prominent as environmental conditions became more corrosive. They are also vibrated with some amplitude everytime pentographs touch contact line. The frequent cyclic load on the wire may result in a fatigue damage. Surface damage by corrosion can make fatigue crack initiate with ease. In the present study, the fatigue life of the used wire was measured 50 to 60% compared with that of new one in average.

반도체 공정용 차압식 질량 유량 제어 장치의 개발 및 성능 평가 (Development and Evaluation of Differential Pressure Type Mass Flow Controller for Semiconductor Fabrication Processing)

  • 안진홍;강기태;안강호
    • 반도체디스플레이기술학회지
    • /
    • 제7권3호
    • /
    • pp.29-34
    • /
    • 2008
  • This paper describes the fabrication and characterization of a differential pressure type integrated mass-flow controller made of stainless steel for reactive and corrosive gases. The fabricated mass-flow controller is composed of a normally closed valve and differential pressure sensor. A stacked solenoid actuator mounted on a base-block is utilized for precise and rapid control of gas flow. The differential pressure flow sensor consisting of four diaphragms can detect a flow rate by deflection of diaphragm. By a feedback control from the flow sensor to the valve actuator, it is possible to keep the flow rate constant. This device shows a fast response less than 0.3 sec. Also, this device shows accuracy less than 0.1% of full scale. It is confirmed that this device is not attacked by toxic gas, so the integrated mass-flow controller can be applied to advanced semiconductor processes which need fine mass-flow control corrosive gases with fast response.

  • PDF

플라즈마 용융 공정시의 폐열 재활용 연구 (A Study on Waste Heat Recycling of Plasma Melting System)

  • 김성중
    • 유기물자원화
    • /
    • 제14권3호
    • /
    • pp.85-90
    • /
    • 2006
  • 플라즈마 용융로에 설치된 폐열 보일러를 실측치와 근접한 모의 보일러를 설계하여 CFD(전산유체역학) 프로그램을 이용하여 얻어진 보일러 내에서의 유해가스발생 및 열 유동현상에 대한 열 설계 능력 확보와 폐열보일러 효율 개선에 대한 연구를 수행하는데 목적이 있다. 보일러 내에서의 온도변화 및 연소가스의 공기 유동, 부식성 가스의 영향으로 인해 보일러 내부에서의 부식위치 및 클링커 생성여부에 관한 연구를 통해 효율적인 보일러의 구조 설계 및 에너지 재활용방안에 이용하고자 한다. 연구결과 플라즈마 용융로에 설치된 보일러 설비는 2차 연소로 출구에서 배출되는 약 $1,200^{\circ}C$의 연소가스를 약 $450^{\circ}C$까지 냉각시킬 수 있는 설계조건을 만족시켰다. 반면 유해가스 유동 결과 보일러 입구 부분의 상단부와 하단부에 부식성 가스 (SOx, HCl)의 영향으로 인하여 부식 및 클링커 생성이 보일러의 다른 위치보다 쉽게 발생될 것으로 예상된다. 이로 인해 보일러 내 외관벽의 부식으로 보일러의 수명 단축 및 효율적인 폐열을 재활용 할 수 없다고 예상된다. 이에 따른 저온 및 고온 부식 방지대책에 대한 세심한 고려가 필요하다 하겠다.

  • PDF

석유시추용 인코넬 625강의 FCAW 용접에 관한 연구 ; 보호가스 변화가 기계적 성질에 미치는 영향 (A Study on Characteristics of Inconel 625 for Petroleum Application by FCAW Process ; Effect of Shield Gases Change Influence on a Mechanical Properties)

  • 박경동;진영범;박형동
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.96-100
    • /
    • 2004
  • Inconel 625 is useful in a variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to over $1090^{\circ}C$, in combination with good low and high temperature mechanical strength. Rencently this material has also been widely used in offshore processing piping in order to extend the maintenance term and improve the quality of anti-corrosion. In general, high quality weldings for this material are readily produced by commonly used processes. How, not all processes are applicable to this material group of Ni-alloys. Metallurgical or the unavailability of matching, position or suitable welding processes produce a lower quality. Nowadays, the flux cored wire is developed and applied for increased productivity in several welding positions, including the vertical position. In this study, the weldability and weldment characteristics(mechanical properties) of inconel 625 are considered in FCAW(Flux Core Arc Welding) associated with the several shielding gases$(80\%Ar+20\%CO2,\;50\%Ar+50CO2,\;100CO2)$ in view of welding productivity.

석유시추용 인코넬 625강의 FCAW용접에 의한 저온 충격강도에 관한 연구 (A Study on Low Temperature Impact Strength of Inconel 625 for Petroleum Application by FCAW Weld)

  • 박경동;안도경;정재욱
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.356-359
    • /
    • 2004
  • Above all Ni-alloys Inconel 625 is used widely in plate of welding structural materials such as turbine case, a combustor of liner. In general, weldability of Inconel 625 is not well because of poorly liquids of weld metal also it have a broken probability oj the welding crack. In case of FCAW weld process, it is not easy to develope of welding materials, because it is possible only fillet welding at view position of look down except for butt welding. But recently, though it is more used by FCAW process, owing to welding materials worked at the vertical position. the study for FCAW weld of Inconel 625 is actively not yet worked. In this study, the weldability and weld characteristics(mechanical characteristics, corrosive property) of Inconel 625 are considered in FC4W weld associated with the several shielding gases$80\%Ar\;+\;20\%\;CO_2,\;50\%Ar\;+\;50\%\;CO_2,\;100\%\;CO_2$ in viewpoint of welding productivity. The results of impact test are follows; It was evaluated 70J at shielding gase of $100\%\;CO_2$, and obtained about 35J at the other shielding gases. If it was used for parts be required the impact value at the extremely low temperature, it is expected to have the advantage of using the $100\%\;CO_2$ shield gase than the others.

  • PDF

발전보일러의 최적연소조정에 대한 실험적 연구 (The Study of Optimized Combustion Tuning for Fossil Power Plant)

  • 정재진;송정일
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF

발전용 보일러의 최적연소조정기법에 대한 실험적 연구 (The Study of Optimized Combustion Tuning Method for Fossil Power Plant)

  • 정재진;송정일
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.