• 제목/요약/키워드: Corrosive Materials

Search Result 226, Processing Time 0.025 seconds

Failure Analysis of Welded type 304 in Cooling Water Pipeline of District Heating System (지역난방 냉각수 배관의 용접부 파손 분석)

  • Jeong, Joon-Cheol;Kim, Woo-Cheol;Kim, Kyung Min;Sohn, Hong-Kyun;Kim, Jung-Gu;Lee, Soo-Yeol;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.296-301
    • /
    • 2020
  • Failure analysis on the welded type 304 pipe used for cooling water piping in the district heating primary side was conducted. Inorganic elements and bacteria in the cooling water and in corrosion products were analyzed, and the weldment was inspected by microscopy and a sensitization test. Corrosion damages were observed in the heat-affected zone, on weld defects such as incomplete fusion or excessive penetration caused by improper welding, or/and at the 6 o'clock position along the pipe axial direction. However, the level of concentration of chloride in the cooling water as low as 80 ppm has been reported to be not enough for even a sensitized type 304 steel, meaning that the additional corrosive factor was required for these corrosion damages. The factor leading to these corrosion damages was drawn to be the metabolisms of the types of bacteria, which is proved by the detection of proton, sulfur containing species, biofilms, and both bacteria and corrosion product analyses.

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt (고온 용융염계에서 Ni-Base 초합금의 부식거동)

  • Cho, Soo-Haeng;Kang, Dae-Seong;Hong, Sun-Seok;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

Corrosion Characteristics of Fe-Si, Ni-Ti and Ni Alloy in Sulfuric Acid Environments (황산 환경에서 Fe-Si, Ni-Ti계 및 Ni 합금의 내부식성 특성)

  • Kwon, Hyuk-Chul;Kim, Dong-Jin;Kim, Hong-Pyo;Park, Ji-Yeon;Hong, Seong-Deok
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Methods of producing hydrogen include steam reforming, electrochemical decomposition of water, and the SI process. Among these methods, the Sulfur iodine process is one of the most promising processes for hydrogen production. The thermochemical sulfur-iodine (SI) process uses heat from a high-temperature-gas nuclear reactor to produce $H_2$ gas; this process is known for its production of clean energy as it does not emit $CO_2$ from water. But the SI-process takes place in an extremely corrosive environment for the materials. To endure SI environments, the materials for the SI environment will have to have strong corrosion resistance. This work studies the corrosion resistances of the Fe-Si, Ni-Ti and Ni Alloys, which are tested in SI-process environments. Among the SI-process environments, the conditions of boiling sulfuric acid and decomposed sulfuric acid are selected in this study. Before testing in boiling sulfuric acid environments, the specimens of Fe-4.5Si, Fe-6Si, Ni-4.5Si, Ni-Ti-Si-Nb and Ni-Ti-Si-Nb-B are previously given heat treatment at $1000^{\circ}C$ for 48 hrs. The reason for this heat treatment is that those specimens have a passive film on the surface. The specimens are immersed for 3~14 days in 98wt% boiling sulfuric acid. Corrosion rates are measured by using the weight change after immersion. The corrosion rates of the Fe-6Si and Ni-Ti-Si-Nb-B are found to decrease as the time passes. The corrosion rates of Fe-6si and Ni-Ti-Si-Nb-B are measured at 0.056 mm/yr and 0.16 mm/yr, respectively. Hastelloy-X, Alloy 617, Alloy 800H and Haynes 230 are tested in the decomposed sulfuric acid for one day. Alloy 800H was found to show the best corrosion resistance among the materials. The corrosion rate of Alloy 800H is measured at -0.35 mm/yr. In these results, the corrosion resistance of materials depends on the stability of the oxide film formed on the surface. After testing in boiling sulfuric acid and in decomposed sulfuric acid environments, the surfaces and compositions of specimens are analyzed by SEM and EDX.

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF

Solid-state synthesis of yttrium oxyfluoride powders and their application to plasma spray coating (옥시불화이트륨 분말의 고상합성 및 플라즈마 스프레이 코팅 적용)

  • Lee, Jung-Il;Kim, Young-Ju;Chae, Hui Ra;Kim, Yun Jeong;Park, Seong Ju;Sin, Gyoung Seon;Ha, Tae Bin;Kim, Ji Hyeon;Jeong, Gu Hun;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.276-281
    • /
    • 2021
  • In order to manufacture a semiconductor circuit, etching, cleaning, and deposition processes are repeated. During these processes, the inside of the processing chamber is exposed to corrosive plasma. Therefore, the coating of the inner wall of the semiconductor equipment with a plasma-resistant material has been attempted to minimize the etching of the coating and particle contaminant generation. In this study, we synthesized yttrium oxyfluoride (YOF) powder by a solid-state reaction using Y2O3 and YF3 as raw materials. Mixing ratio of the Y2O3 and YF3 was varied from 1.0:1.0 to 1.0:1.6. Effects of the mixing ratio on crystal structure and microstructure of the synthesized YOF powder were investigated using XRD and FE-SEM. The synthesized YOF powder was successfully applied to plasma spray coating process on Al substrate.

Fabrication and Characteristics of Parylene Coated Isolated Type Pressure Sensor (파릴렌 막이 증착된 봉입형 압력센서의 제작 및 그 특성)

  • 김우정;조용수;김홍균;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.81-86
    • /
    • 2003
  • To measure the pressure using semiconductor type pressure sensor in water or chemical solution, the sensor must be protected from the solution using proper packaging materials. stainless steel isolated type pressure sensor packaged with SUS316 can be widely used to measure the pressure in water or chemical due to its high corrosion-resistance and good performance in tensility and welding. Even if the surface of SUS316 has a plenty of nickel and chromium, the SUS316 is highly corrosive in acidic or alkaline solution. We coated parylene and adhesion promoting copper layer are 5${\mu}{\textrm}{m}$ and 200nm, respectively. The parylene coated stainless steel pressure sensor showed good anti-corosive characteristics in various strong acids. The accuracy of pressure sensor wasn't varied after parylene coating with 0.5%FSO.

Correlation between Carbon Steel Corrosion and Atmospheric Factors in Taiwan

  • Lo, C.M.;Tsai, L.H.;Hu, C.W.;Lin, M.D.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.37-44
    • /
    • 2018
  • Taiwan has a typical marine climate featuring perennial high-temperature and dampness. This climate, together with the emission of various industrial corrosive waste gases in recent years, contributes a lot to the corrosion of metal materials. In this study, samples of carbon steel exposed to various atmospheres in Taiwan were analyzed to investigate the impacts of atmospheric factors on carbon steel corrosion. Carbon steel samples were collected from 87 experimental stations between 2009 and 2012. Statistical analysis was employed to investigate the correlations between the carbon steel corrosion situations and the atmospheric factors such as concentrations of sulfur dioxide or chloride, exposure time, rainfall, etc. The results indicate that for samples from industrial areas, the sulfur dioxide concentration and exposure time during fall and winter are significantly correlated to the condition of the carbon steel corrosion. However, for samples from coastal zones, the significant correlated factors are chloride concentration and wetting time during winter. The results of this study are useful for the development of carbon steel corrosion prediction models.

Modification of EPDM Rubbers for Enhancement of Environmental Durability of Aerator Membrane (산기관용 멤브레인 고무판의 환경내구성 향상을 위한 EPDM 고무의 개질)

  • Ahn, Won-Sool
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.107-112
    • /
    • 2008
  • A study on the enhancement of environmental durability of EPDM rubber materials for the aerator membrane was performed using a butyl rubber as a modifier. A conventional EPDM rubber formulation was evaluated as having about 26.0 wt% or more oil content from the chloroform immersion test. These oils would be gradually and continuously deleted from the aerator membrane when directly exposed to a waste-water or chemically corrosive fluids, making the membrane less flexible and the performance worse. To improve this, a butyl rubber (IIR) was utilized as the modifier for a low-ENB type of EPDM rubber formulation with low-oil content. The environmental durability of the IIR-modified EPDM rubber material was expected to be greatly enhanced compared to the conventional one. However, the mechanical and performance properties such as elongation, tensile strength, and air bubble size, etc. were still maintained as good as in the conventional one. Furthermore, TGA analysis of the IIR-modified EPDM material showed that there would be partially compatible between IIR and EPDM. It also showed that the initial degradation temperature of the IIR-modified EPDM could be somewhat increased, exhibiting the enhanced compatibility among the components and, thereby, more enhanced environmental durability.

A Study on Corrosive Behavior of Spring Steel by Shot-Peening Process (쇼트피닝 가공을 통한 스프링강의 부식거동에 관한 연구)

  • An, Jae-Pil;Park, Keyung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.325-330
    • /
    • 2004
  • Recently, the request for the high strength of material is more and more increased in the area of industrial environment and machinery. To accomplish the high strength of materials, carbonizing treatment, nitrifying treatment, shot-peening method are representatively applied, however, shot-peening method is generally used among the surface processes. Shot peening is a cold working process used to impact Compressive residual stressed in the exposed surface layers. Benefits due to shot peening are increase in resistance to fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in 3.5% NaCl. The immersion test as performed on the two kinds of specimens. Corrsion potential, polarization curve, residual stress and etc, were investigated from experiment results. From test result the effect of shot peening on the corrosion was evaluated. The important results of the experimental study on the effects of shot peened on the environment corrosion of spring steels are as follows; In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent mental. Surface of specimen, which is treated with the shot peened is placed as more activated state against inner base metal. It can cause t도 anti-corrosion effect on the base metal.

  • PDF

Evaluation of Corrosion Index by Water Quality Parameters in Korea (국내 수질에 적합한 부식성지수 선정 연구)

  • Ahn, Kyunghee;Yu, Soonju;Park, Sujeong;Kwon, Ohsang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.615-623
    • /
    • 2012
  • In this study, we evaluate the corrosion indexes (CI) such as Langelier Index (LI), Larson ratio (LR), Ryznar saturation index (RSI), Aggressiveness index (AI) of water quality for raw water, treated water and water in distribution reservoir at major eight drinking water treatment plants (DWTPs) in Korea. By analyzing secondary contamination of tap water, the variation of secondary contaminants was investigated with regard to pipe materials, aging and corrosion index (CI). In addition, we suggested an appropriate CI applicable water quality and the management plan for CI monitoriing. All CI showed corrosive water quality, and they did not change significantly in the distribution network. However, Copper (Cu), iron (Fe) and zinc (Zn) concentrations as secondary contaminants increased through the distribution network. Among CI, LI was most sensitive to changes in raw water quality and drinking water treatment. Also, it has high correlations with other indexes such as RSI, AI. Therefore, LI is considered as an appropriate CI to the domestic water quality. Based on these result, we propose LI as a drinking water quality standard to control the pipe corrosion from DWTPs.