• Title/Summary/Keyword: Corrosion-damage

Search Result 627, Processing Time 0.032 seconds

A Study on Quality Improvement for the Prevention of Water Infiltration and Corrosion of Helicopter MRA Control-Rod (회전익 항공기 MRA 조종로드 방수 및 부식 방지에 관한 연구)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.92-100
    • /
    • 2017
  • The Helicopter MRA Control Rod System has the important function of controlling the speed, height, and direction of helicoptersby adjusting the main rotor disc. However, the ingress of water into the inner control rod can cause ice damage in the rod during winter operation and also corrosion;these defects need to be rectified. The water flowed into the control rod through the upper side space, and the rod was cracked during icing expansion occurring at low temperature. The corrosion occurred due to the lack of coating process during the manufacturing process. To resolve these problems, the upper rod was sealed to prevent water inflow and a coating process was added to prevent corrosion. These solutions were verified by awaterproof test and a salt fog test. The phenomena, causes and measures were reviewed and the methods of improvement were established and proven. This proposed technology to prevent water infiltration and corrosion will contribute to the safety of rotary wing aircraft.

Development of a numerical modelling technique for evaluation of a long-term chemical deterioration of tunnel shotcrete lining (터널 숏크리트 라이닝의 장기 화학적 열화 손상 평가를 위한 수치 모델링 기법 개발)

  • Shin, Hyu-Soung;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.299-307
    • /
    • 2007
  • In this study, a new concept for simulating a physical damage of tunnel shotcrete lining due to a long-term chemical deterioration has been proposed. It is known that the damage takes place mainly by internal cracks, reduction of stiffness and strength, which results mainly from volume expansion of the lining and corrosion of cement materials, respectively. This damage mechanism of shotcrete lining appears similar in most kinds of chemical reactions in tunnels. Therefore, the mechanical deterioration mechanism induced by a series of chemical reactions was generalized in this study and mathematically formulated in the framework of thermodynamics. The numerical model was implemented to a 3D finite element code, which can be used to simulate behaviour of tunnel structures undergoing external loads as well as chemical deterioration in time. A number of illustrative examples were given to show a feasibility of the model in tunnel designs.

  • PDF

A Study on the Evaluation of the Environmental Performance of Salt Damage in Concrete Bridges under Marine Environment (해양 환경하 콘크리트 교량의 염해환경 성능평가 연구)

  • Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun;Hong, Sung-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.60-69
    • /
    • 2018
  • This study aims to investigate in the assessment of salt damage conditions in concrete structures under marine environment conditions. It aims also to improve the durability of new concrete bridge through applying the life prediction method of salt damaged bridges. As measuring chloride contents of these bridges on the southwest coastal area, it is shown that the average amount of chloride on these surfaces close to shore is $10.5kg/m^3$. This figure is much higher than that of the Standard Specification for Concrete($1.5kg/m^3{\sim}2.5kg/m^3$). In contrast, it is shown the average amount of chloride on these surfaces in tide zone is $13.1kg/m^3$. Its figure is much lower than that of the Standard Specification for Concrete($20kg/m^3$). And the life of bridges is estimated about 17 years. To improve the durability for salt damage, these bridges are applied to surface treatment method which the replacement rate of furnace slag is 60%. Under this condition, it is expected to be 110 years. Consequently, it is clear that the use of slag replacement rate, surface treatment agent, and anti-corrosion agent to control chloride penetration effects of a submerge-based concrete bridge will be required.

Mechanical Properties Assessment of Steels Obtained from an Aged Naval Ship (노후 함정 강재의 기계적 특성 평가)

  • Sang-Hyun Park;Young-Sik Jang;Su-Min Lee;Sang-Rai Cho;Sang Su Jeon;Ju Young Hwang;Nam-Ki Baek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.65-75
    • /
    • 2023
  • Ships operated at sea for a long time are subjected to various kinds of loads, which may cause various types of damage. Such damages will eventually reduce the strength of hull structures. Therefore, it is necessary to estimate and evaluate the residual strength and remaining fatigue life of aging ships in order to secure structural safety, establish a reasonable maintenance plan, and make a judgment of life extension. For this purpose, the corrosion damage and local denting damage should be measured, fatigue damage estimation should be performed, and material properties of aged steel should be identified. For this study, in order to investigate the mechanical properties of aged steel, steel plates were obtained from a naval ship that reached the end of her life span. The specimens were manufactured from the obtained steel plates, and static and dynamic tensile tests, fatigue tests, and metallographic tests were performed. The mechanical properties obtained from the aged steel plates were compared with those of new steel plates to quantify the aging effect on the mechanical properties of marine steel materials.

Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition (자율 감지 및 확률론적 신경망 기반 패턴 인식을 이용한 배관 구조물 손상 진단 기법)

  • Lee, Chang-Gil;Park, Woong-Ki;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2011
  • In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach.

An Experimental Study on Piping Feasibility of PE Compound Pipe for Fire Protection Service (PE 이종강관의 소방용 배관 적용성에 관한 실험적 연구)

  • Park, Jeong-Hwa;Oh, Cheon-Young;Kwark, Ji-Heon;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.55-61
    • /
    • 2016
  • In this study, to determine whether it is possible to apply Polyethylene (PE) compound pipe, which was developed to solve the problem caused by the corrosion of the fire protection piping currently in usein water based fire extinguishing systems, we performed an actual mockup fire test. Since no test standard was available related to the developed compound pipe, we compared and analyzed domestic and international technical materials and test standards and selected suitable fire test standards to evaluate the performance of the PE compound pipe. we applied two fire test standards to the PE compound pipe, viz. those for CPVC and metallic pipes, and conducted a total of 6 experiments to evaluate its performance. According to the results of the first and second fire tests based on the test standard for the CPVC pipe, neither the fitting nor the piping was damaged or deformed and no leakage was observed in the pressure test, which was performed for 5 minutes. For the fire test based on the metallic pipe test standard, a total of 4 experiments were conducted. The first two experiments were conducted to simulate the wet piping system. In the results of this fire test, neither leakage nor rupture was observed from the PE compound pipe and no damage was caused, such as the secession of the PE material. However, in the next two experiments, which simulated the dry system, the PE compound pipe suffered damage and rupture, including deformation before the fire fighting water was discharged. Therefore, we found that the piping performance of the PE compound pipe did not undergo any deterioration, including fusion, deformation, or damage, in the wet piping system simulated fire test.

Hertzian contact fatigue of dental ceramic implant abutment (인공치아용 세라믹 임플란트 상부구조물의 반복하중 피로특성)

  • Lee Deuk Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.199-203
    • /
    • 2004
  • Feasibility of 3Y-TZP for dental implant abutment was evaluated under the Hertzian cyclic fatigue by examining the extent of the indentation damage and strength degradation. Fatigue test was conducted at contact loads of 500 to 3000 N and up to $10^6$ cycles in exact in vitro environments. At 500 N, no strength degradation and crack generation was observed up to $5\times10^5$ contact cycles. As load rose, the dramatic reduction in strength was observed when the damage transition from ring to radial crack occurred. The. extent of strength degradation was more pronounced in vitro environment probably due to chemical corrosion of artificial saliva through cracks introduced during large numbers of contacts.

Analysis of Copper clad steel wire in the drawing process using FE method (유한요소 해석을 이용한 동피복 복합선재의 인발 공정 해석)

  • Kim H.S.;Jo H.;Jo H. H.;Kim D.K.;Kim B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.27-30
    • /
    • 2004
  • Clad wire , which has the advantages of the high strength of a steel core and the electro-conductivity, corrosion resistance of a copper layer, is widely being used the telecommunications, electric-electronic and military technology industries, among others. It is important to obtain uniform coated rate when producing clad wires. Clad wire drawing process can be influenced on damage and coated rate of core and sleeve by process variables as semi-die angle and reduction in area. Therefore, in this study, the finite-element results established in previous study is used to analyze the effect of the various forming parameters, which included the semi-die angle, reduction in area etc. The coated rate will be predicted with observation copper coated rate variation according to total reduction in area and the optimal pass schedule will be set up through proper reduction in area and semi-die angle variation.

  • PDF

A Control Technique for the Rail Potential Limit Device in DC Feeding System (직류급전계통에서 레일전위상승제한장치의 동작제어기법)

  • Min, Myung-Hwan;Jung, Ho-Sung;Park, Young;Chang, Sang-Hoon;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.485-490
    • /
    • 2012
  • Nowadays, in metropolitan railroad, DC feeding system is being generally applied. In order to reduce damage of electro-chemical corrosion caused by stray current and leakage current, in DC feeding system, rail is used as negative-polarity return conductor for traction load current. However, it has problem of rail potential increase and there are no adequate measures to prevent it in domestic. The rise of rail potential leads to damage for human and equipments. To solve the problems, this paper presents fundamental theory and related standards about rail potential increase. And then, we analyzed field testing data and simulated a variety of operations by using PSCAD/EMTDC as an analysis program of power system. In addition, this paper suggests rail potential limit device and addresses how to the device. To verify the effect, simulation of DC feeding system before and after the application of the device is carried out in various cases.

Eddy Current Testing of Type-439 S/S Tube of MSR in Turbine System (터빈 습분분리재열기 Type-439 스테인리스강 튜브 와전류검사)

  • Lee, Heejong;Cho, Chanhee;Jung, Jeehong;Moon, Gyoonyoung
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • The tubes in heat exchanger are typically made of copper alloy, stainless steel, carbon steel, titanium alloy material. Type-439 ferritic stainless steel is ferromagnetic material, and furnish higher heat transfer rates than austenitic stainless steels and higher resistance to corrosion-induced flaws. Ferritic stainless steel can be found in low-pressure(LP) feedwater heaters and moisture separator reheaters(MSRs) in turbine system. LP feedwater heaters generally utilize thin wall Type-439 stainless steel tubing, whereas MSRs typically employ a heavier wall tubing with integral fins. Service-induced damage can occur on the O.D(outside diameter) surface of Type-439 ferritic stainless steel tubing which is employed for MSRs tubing, and the most typical damage mechanism is vibration-induced tube-to-TSP(tube support plate) wear and fatigue cracking. The wear has been reported that occurs mainly on the OD surface. Accordingly, in this study, we have evaluated the flaw sizing capability of magnetic saturation eddy current technique using magnetic saturation probe and flawed specimen.

  • PDF