• Title/Summary/Keyword: Corrosion-damage

Search Result 627, Processing Time 0.026 seconds

Anti-Corrosion Property of Geopolymer Evaluated by an Impressed Current Cathodic Protection Method, Exposed to Marine Environment (염해환경에서 외부전원법에 의한 지오폴리머 시험체 보강철근의 방식특성 평가)

  • Lee, Hae-Seung;Cho, Ggu-Hwan;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.397-405
    • /
    • 2014
  • There are many literatures reporting that the service life of re-bars in concrete structures is reduced in the oceanic environment due to chloride attack. To solve this problem, this study used geo-polymer as a mix material for concrete to increase its resistance to salt damage, and the external voltage method, one of the electric methods, is was applied to evaluate the likelihood of re-bars in the oceanic structure being exposed to the extreme salt environment. The items evaluated include the natural potential of re-bars and the corrosion rate. The results of the tests showed that in all of the salt environmental conditions (submerged zone, tidal zone, and crack), the tested materials were remarkably effective compared with ordinary concrete. The corrosion protective property was found not only in the evaluation of the natural potential but also in the evaluation of the corrosion rate, suggesting that the external voltage method can be used stably for geo-polymer RC structures in an extreme salt environment.

Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation

  • Qi, Jianan;Wang, Jingquan;Li, Ming;Chen, Leilei
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.79-92
    • /
    • 2017
  • Initial damage to a stud due to corrosion, fatigue, unexpected overloading, a weld defect or other factors could degrade the shear capacity of the stud. Based on typical push-out tests, a FEM model and theoretical formulations were proposed in this study. Six specimens with the same geometric dimensions were tested to investigate the effect of the damage degree and location on the static behavior and shear capacity of stud shear connectors. The test results indicated that a reduction of up to 36.6% and 62.9% of the section area of the shank could result in a dropping rate of 7.9% and 57.2%, respectively, compared to the standard specimen shear capacity. Numerical analysis was performed to simulate the push-out test and validated against test results. A parametrical study was performed to further investigate the damage degree and location on the shear capacity of studs based on the proposed numerical model. It was demonstrated that the shear capacity was not sensitive to the damage degree when the damage section was located at 0.5d, where d is the shank diameter, from the stud root, even if the stud had a significant reduction in area. Finally, a theoretical formula with a reduction factor K was proposed to consider the reduction of the shear capacity due to the presence of initial damage. Calculating K was accomplished in two ways: a linear relationship and a square relationship with the damage degree corresponding to the shear capacity dominated by the section area and the nominal diameter of the damaged stud. This coefficient was applied using Eurocode 4, AASHTO LRFD (2014) and GB50017-2003 (2003) and compared with the test results found in the literature. It was found that the proposed method produced good predictions of the shear capacity of stud shear connectors with initial damage.

Development of Heterogeneous Damage Cause Estimation Technology for Bridge Decks using Random Forest (랜덤포레스트를 활용한 교량 바닥판의 이종손상 원인 추정 기술 개발)

  • Jung, Hyun-Jin;Park, Ki Tae;Kim, Jae Hwan;Kwon, Tae Ho;Lee, Jong-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • An investigation into the detailed safety diagnosis report indicates that domestic highway bridges mainly suffer from defects, deterioration, and damage due to physical forces. In particular, deterioration is an inevitable damage that occurs due to various environmental and external factors over time. In particular, bridge deck is very vulnerable to cracks, which occur along with various types of damages such as rebar corrosion and surface delamination. Thus, this study evaluates a correlation between heterogeneous damage and deterioration environment and then identifies the main causes of such heterogeneous damage. After all, a bridge heterogeneous damage prediction model was developed using random forests to determine the top five factors contributing to the occurrence of the heterogeneous damage. The results of the study would serve as a basic data for estimating bridge maintenance and budget.

A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion (고체입자 충돌침식으로 인한 배관 재질의 손상에 관한 연구)

  • Kim, Kyung-Hoon;Choi, Duk-Hyun;Kim, Hyung-Joon
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.130-138
    • /
    • 2014
  • Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor-based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice (주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생)

  • Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

The Biological Functionality of Electro-Galvanized Steels Coated with a Hybrid Composite Containing Pyrethroid

  • Jo, Du-Hwan;Kim, Myung-Soo;Kim, Jong-Sang;Oh, Hyun-Woo
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • The electronic industries require environmentally-friendly and highly functional materials to enhance the quality of human life. Home appliances require insect repellent steels that work to protect household microwave ovens from incurring damage by insects such as fire ants and cockroaches in tropical regions. Thus, POSCO has developed new types of functional steels, coated with an array of organic-inorganic hybrid composites on the steel surface, to cover panels in microwave ovens and refrigerators. The composite solution uses a fine dispersion of hybrid solution with polymeric resin, inorganic and a pyrethroid additive in aqueous media. The hybrid composite solution coats the steel surface, by using a roll coater and is cured using an induction curing furnace on both the continuous galvanizing line and the electro-galvanizing line. The new steels were evaluated for quality performances, salt spray test for corrosion resistance and biological performance for both insect repellent and antimicrobial activity. The new steels with organic-inorganic composite coating exhibit extraordinarily biological functionalities, for both insect repellent and antimicrobial activities for short and long term tests. The composite-coating solution and experimental results are discussed and suggest that the molecular level dispersion of insecticide on the coating layer is key to biological functional performances.

A Study on the Economic Evaluation of Thermal Spray Methods for the Corrosion Protection of Steel (금속용사 방식공법의 경제성 평가에 관한 연구)

  • Jung Sung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.13-16
    • /
    • 2005
  • Generally, as corrosive protection processing of a steel structure, zinc galvanizing and heavy duty coating paint are applied. However, zinc galvanizing has the difficulty of restriction of a size, or on-site construction. Moreover, heavy duty coating paint has a problem with many administrative and maintenance expenses with short problem of adhesion, corrosion generating of a damage portion, and maintenance management cycle. In this study, a salt water spray test, CASS test, and the electrochemistry examination were carried out for the thermal metal spray method of construction for corrosive protection performance evaluation. Moreover, the corrosive protection life of a thermal metal spray method of construction was quantitatively calculated on the basis of this experiment. in consideration of LCC, the economical efficiency of a general corrosive protection method of construction and a thermal metal corrosive protection method of construction was compared. Consequently, although initial construction expense was estimated 16 to $30\%$ high, as for a thermal metal spray method of construction, it turns out that the administrative and maintenance expenses for 100 years became cheap 9.3 to 13 or more times.

  • PDF

Tensile strength prediction of corroded steel plates by using machine learning approach

  • Karina, Cindy N.N.;Chun, Pang-jo;Okubo, Kazuaki
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.635-641
    • /
    • 2017
  • Safety service improvement and development of efficient maintenance strategies for corroded steel structures are undeniably essential. Therefore, understanding the influence of damage caused by corrosion on the remaining load-carrying capacities such as tensile strength is required. In this study, artificial neural network (ANN) approach is proposed in order to produce a simple, accurate, and inexpensive method developed by using tensile test results, material properties and finite element method (FEM) results to train the ANN model. Initially in reproducing corroded model process, FEM was used to obtain tensile strength of artificial corroded plates, for which surface is developed by a spatial autocorrelation model. By using the corroded surface data and material properties as input data, with tensile strength as the output data, the ANN model could be trained. The accuracy of the ANN result was then verified by using leave-one-out cross-validation (LOOCV). As a result, it was confirmed that the accuracy of the ANN approach and the final output equation was developed for predicting tensile strength without tensile test results and FEM in further work. Though previous studies have been conducted, the accuracy results are still lower than the proposed ANN approach. Hence, the proposed ANN model now enables us to have a simple, rapid, and inexpensive method to predict residual tensile strength more accurately due to corrosion in steel structures.

Cavitation and Electrochemical Characteristics Using Hydrogen Overpotential Method for ALBC3 Alloy (ALBC3 합금의 수소과전압 현상을 이용한 캐비테이션과 전기화학적 특성)

  • Park, Jae-Cheul;Lee, Seung-Jun;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.6
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, the cavitation test and electrochemical experiments were conducted for ALBC3(Cu-Al) alloy that has an excellent corrosion resistance and cavitation characteristic in sea water. Based on the ASTMG32 regulation, the cavitation test was performed with the cavitation and cavitation erosion tester using piezoelectric effect. The electrochemical characteristics are evaluated with potentiostatic experiments in activation polarization potential range. As a result, cavitation damage is increased proportionally to temperature and time at $30{\mu}m$ amplitude. It is appeared that acceleration period in weight loss presented over 6 hours under the cavitation environment in sea water. In addition, corrosion damages were observed at the potential range of -3.2~-1.4 V as the result of potensiostatic experiments during 12 hours in activation polarization potential range.

Comparison of Diffusion Characteristic of Chloride According to the Condition of Hardened Concrete (경화된 콘크리트의 상태에 따른 염화물 확산특성 비교)

  • Leem Young-Moon;Yang Eun-Ik;Min Seok-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.89-94
    • /
    • 2004
  • Most reinforcements in concrete are constructed by steel. Corrosion of reinforcement is the main cause of damage and early failure of reinforced concrete structures. The corrosion is mainly professed by the chloride ingress. In general, chloride in concrete can be discriminated by two components, total chloride and fire chloride. This paper provides a testing method on the coefficient of chloride diffusion in concrete and the relationship between total chloride and free chloride in concrete for the composition of predicting model on diffusion rate of chloride. In order to complete this predicting model, this study will use chloride penetration characteristic, diffusion coefficient and experiment of color change on silver nitrate solution. This predicting model is going to help that grasp special quality on salt content inclusion of concrete structure that is exposed in chloride environment. Accurate predicting model can be effectively used not only in selecting of repair time but also in preventing from various deteriorations.