• 제목/요약/키워드: Corrosion release

검색결과 79건 처리시간 0.025초

해양구조물용 알미늄 합금의 SCC에 의한 파괴연구 (The Fracture Study of SCC of Al - Alloy for Marine Structures)

  • 김귀식
    • 수산해양기술연구
    • /
    • 제19권1호
    • /
    • pp.79-84
    • /
    • 1983
  • 분극전위변화에 따른 고역 내식성 알미늄합금(5083)의 SCC 거동을 연구 검토한 결과를 요약하면 다음과 같다. 1. 5083 알미늄합금의 K 하(IC)은 134.81~148.38kg/mm 상(3/2)이며, 전위변화에 따라 K 하(Ii)은 75.92~145.78kg/mm 하(3/2)이다. 2. K 하(I)-V의 거동은 양분극시 Region I 과 II가 나타나고, K 하(Ii)/K 하(IC)의 비가 작을수록 crack성장속도도 빠르게 나타난다. 3. 분극전위 -987mV SCE에서 crack성장속도가 가장 지연되므로 122mV SCE을 음분극하면 SCC 방지효과를 얻을 수 있을 것으로 생각된다. 4. 입계의 $\beta$상의 석출은 분극전위가 클수록 크게 나타난다.

  • PDF

Sol-Gel법으로 HA코팅된 치과용 임플란트 합금의 표면특성 (Surface Characteristics of HA Coated Dental Implant Alloy by Sol-Gel Method)

  • 최한철;고영무
    • 한국표면공학회지
    • /
    • 제38권4호
    • /
    • pp.167-173
    • /
    • 2005
  • Surface characteristics of HA(hydroxyapatite) coated dental implant alloy by Sol-Gel method were investigated using potentiostat, ICP, SEM, EDX, EPMA and surface roughness tester. Surface roughness of HA coated specimen by Sol-Gel showed higher than that of PVD coated specimen. Corrosion resistance increased in the order of $1\%$ lactic acid, artificial saliva, $0.5\%$ HCI and $0.9\%$ NaCl solution. Amount of Ca element release was higher than that of V and P in the $0.5\%$ HCI and $0.9\%$ NaCl solution.

Electrochemical Study of Three Stainless Steel Alloys and Titanium Metal in Cola Soft Drinks

  • Peralta-Lopez, D.;Sotelo-Mazon, O.;Henao, J.;Porcayo-Calderon, J.;Valdez, S.;Salinas-Solano, G.;Martinez-Gomez, L.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.294-306
    • /
    • 2017
  • Stainless steels and titanium alloys are widely used in the medical industry as replacement materials. These materials may be affected by the conditions and type of environment. In the same manner, soft drinks are widely consumed products. It is of interest for dental industry to know the behavior of medical-grade alloys when these are in contact with soft drinks, since any excessive ion release can suppose a risk for human health. In the present study, the electrochemical behavior of three stainless steel alloys and pure titanium was analyzed using three types of cola soft drinks as electrolyte. The objective of this study was to evaluate the response of these metallic materials in each type of solution (cola standard, light and zero). Different electrochemical techniques were used for the evaluation of the alloys, namely potentiodynamic polarization, linear polarization, and open-circuit potential measurements. The corrosion resistance of the stainless-steel alloys and titanium in the cola soft drinks was provided by the formation of a stable passive film formed by metal oxides. Scanning electron microscopy was used as a complementary technique to reveal corrosion phenomena at the surface of the materials evaluated.

Evaluation of corrosion resistance of Co-Cr alloys fabricated with different metal laser sintering systems

  • Tuna, Suleyman Hakan;Karaca, Erhan;Aslan, Ismail;Pekkan, Gurel;Pekmez, Nuran Ozcicek
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권3호
    • /
    • pp.114-123
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the corrosion resistance of the specimens produced by five different commercial metal laser sintering (MLS) systems with their recommended Co-Cr alloy powders. MATERIALS AND METHODS. The MLS machines and the alloy powders used were, ProX 100-ST2724G (St-Pro), Mysint 100-EOS SP2 (SP2-Mys), EOSINT 270-EOS SP2 (SP2-EOS), SLM 100-Starbond CoS (SB-SLM), and MLab Cusing-Remanium® Star (RS-MLab), respectively. Eight specimens from each group were prepared. Open circuit potential (Eocp) and electrochemical impedance spectroscopy (EIS) measurements of polished surfaces of the specimens were conducted in a three-electrode cell using a potentiostat-galvanostat in Fusayama-Meyer artificial saliva (AS). Specimens from each group were immersed in AS and de-ionized water for seven days. Eocp, charge transfer resistance (Rct) values, and released ions (㎍/㎠ × 7d) in different solutions were determined. The specimen surfaces were observed with SEM/EDS. Results were analyzed statistically. RESULTS. Eocp values have shifted to potentials that are more positive over time. Steady-state Eocp values were from high to low as follows, SB-SLM, SP2-Mys, SP2-EOS, RS-MLab, and ST-Pro, respectively. After 60 mins, RS-MLab specimens had the highest Rct value, followed by SP2-Mys, SB-SLM, SP2-EOS, and ST-Pro. In all groups, ion release was higher in AS than that in de-ionized water. CONCLUSION. There were small differences among the corrosion resistances of the Co-Cr alloy specimens produced with MLS systems; meanwhile, the corrosion resistances were quite high for all specimens.

Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model

  • Choi, Jonghye;Kim, Hyejin;Choi, Jinhee;Oh, Seung Min;Park, Jeonggue;Park, Kwangsik
    • Environmental Analysis Health and Toxicology
    • /
    • 제29권
    • /
    • pp.4.1-4.10
    • /
    • 2014
  • Objectives Effects of nanoparticles including zinc oxide nanoparticles, titanium oxide nanoparticles, and their mixtures on skin corrosion and irritation were investigated by using in vitro 3D human skin models ($KeraSkin^{TM}$) and the results were compared to those of an in vivo animal test. Methods Skin models were incubated with nanoparticles for a definite time period and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide method. Skin corrosion and irritation were identified by the decreased viability based on the pre-determined threshold. Results Cell viability after exposure to nanomaterial was not decreased to the pre-determined threshold level, which was 15% after 60 minutes exposure in corrosion test and 50% after 45 minutes exposure in the irritation test. IL-$1{\alpha}$ release and histopathological findings support the results of cell viability test. In vivo test using rabbits also showed non-corrosive and non-irritant results. Conclusions The findings provide the evidence that zinc oxide nanoparticles, titanium oxide nanoparticles and their mixture are 'non corrosive' and 'non-irritant' to the human skin by a globally harmonized classification system. In vivo test using animals can be replaced by an alternative in vitro test.

TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성 (Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials)

  • 김영운;조주영;최한철
    • Corrosion Science and Technology
    • /
    • 제8권4호
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

FUEL PERFORMANCE CODE COSMOS FOR ANALYSIS OF LWR UO2 AND MOX FUEL

  • Lee, Byung-Ho;Koo, Yang-Hyun;Oh, Jae-Yong;Cheon, Jin-Sik;Tahk, Young-Wook;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.499-508
    • /
    • 2011
  • The paper briefs a fuel performance code, COSMOS, which can be utilized for an analysis of the thermal behavior and fission gas release of fuel, up to a high burnup. Of particular concern are the models for the fuel thermal conductivity, the fission gas release, and the cladding corrosion and creep in $UO_2$ fuel. In addition, the code was developed so as to consider the inhomogeneity of MOX fuel, which requires restructuring the thermal conductivity and fission gas release models. These improvements enhanced COSMOS's precision for predicting the in-pile behavior of MOX fuel. The COSMOS code also extends its applicability to the instrumented fuel test in a research reactor. The various in-pile test results were analyzed and compared with the code's prediction. The database consists of the $UO_2$ irradiation test up to an ultra-high burnup, power ramp test of MOX fuel, and instrumented MOX fuel test in a research reactor after base irradiation in a commercial reactor. The comparisons demonstrated that the COSMOS code predicted the in-pile behaviors well, such as the fuel temperature, rod internal pressure, fission gas release, and cladding properties of MOX and $UO_2$ fuel. This sufficient accuracy reveals that the COSMOS can be utilized by both fuel vendors for fuel design, and license organizations for an understanding of fuel in-pile behaviors.

수소 취성 시험 평가를 위한 수소 방출 방지용 비수계 아연(Zn) 도금 (Non-aqueous Zinc(Zn) Plating to Prevent Hydrogen Release from Test Specimens in Hydrogen Embrittlement Test)

  • 전준혁;장종관
    • 한국가스학회지
    • /
    • 제26권3호
    • /
    • pp.21-26
    • /
    • 2022
  • 아연은 인체에 유해한 카드뮴을 대체하여 금속재료에 수소가스가 침투하거나 금속재료 내부로부터 수소가 누출되는 것을 방지하기 위한 친환경 코팅 재료로 주목받고 있다. 일반적으로 수성 및 산성 분위기에서 수행되는 아연(Zn) 및 아연 합금의 전기도금은 낮은 쿨롱 효율, 부식 및 수소 누출과 같은 단점이 있어 산업적 이용이 어렵다. 본 연구에서는 염화콜린과 에틸렌글리콜을 이용하여 Deep-eutectic solvent를 합성하고 이를 용매로 사용하여 아연 도금용 전해질을 제조하여 STS 304 기판 위에 전기 도금하였다. 주사전자현미경(SEM)과 원자힘현미경(AFM)을 이용하여 표면 미세구조와 조도를 관찰하였다. X선회절분석(XRD)을 이용하여 도금 막의 결정구조를 분석하였다. 마지막으로 수소를 주입한 STS 304 기판에 최적화된 Zn 도금액을 코팅한 시료의 수소 방출 방지 효과를 분석하였다.

발전용 바이오매스 연료(WP·EFB·PKS)의 열분해 온도 조건에 따른 반탄화 및 염소 방출 특성에 관한 연구 (A Study on the Characteristics of Torrefaction and Chlorine Release According to the Mild Pyrolysis Temperature Conditions of Biomass Fuels (WP·EFB·PKS) for Power Generation)

  • 김지훈;박재흔;최재현;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.683-690
    • /
    • 2017
  • Wood pellet (WP), empty fruit bunch (EFB) and palm kernel shell (PKS) which are biomass fuels for power generation are selected to study the characteristics of torrefaction process. These biomass fuels are torrefied at $220^{\circ}C$, $250^{\circ}C$, and $280^{\circ}C$. The heating value of biomass fuels is increased depending on the torrefaction temperature. However, due to energy yield decline, it is not always desirable to torrefy biomass at higher temperature. Considering the mass yield and energy yield after torrefaction, the most proper temperature conditions for torrefaction of WP is $250-280^{\circ}C$ and for EFB, PKS are $220-250^{\circ}C$. Additionally, to investigate the phenomenons of chlorine release during torrefaction process, Ion Chromatography (IC) method was used. In the case of EFB and PKS torrefied at $300^{\circ}C$, the chlorine component has been reduced by 97.5% and 95.3% compared to the raw biomass, respectively. In conclusion, torrefied biomass can be used as alternative fuels in replacement of coals for both aspects of heating value and chlorine corrosion problems.

다구찌 기법을 적용한 섬유금속적층판 접착층의 에너지 해방률 강화에 대한 연구 (Study on Enhancement for Interfacial Energy Release Rate of Adhesive Layer in Fiber Metal Laminates using Taguchi Method)

  • 길민규;박으뜸;송우진;강범수
    • Composites Research
    • /
    • 제29권5호
    • /
    • pp.249-255
    • /
    • 2016
  • 섬유금속적층판은 우수한 피로특성, 내부식성, 충격저항 등으로 인하여 항공우주산업에서 널리 사용되고 있다. 본 논문에서는 다구찌 기법을 사용하여 섬유금속적층판의 내부 에너지 해방률을 향상시킬 수 있는 공정 조건을 도출하는 절차에 대해 실험적 연구가 수행되었다. 내부 접착력 향상을 위한 제조공정을 도출하기 위해서, 표면처리, 접착필름의 용융점 유지시간 및 초기 압력이 서로 다르다는 조건하에서 제작한 시편들에 대해서 Double cantilever beam과 End-notched flexure 시험을 수행하였다. 시험으로부터 모드 I과 모드 II의 에너지 해방률을 측정한 후, 다구찌 기법의 망대특성에 의한 신호 잡음비를 비교하여 효율적인 제조공정을 도출하였다.