• 제목/요약/키워드: Corrosion measurement

검색결과 432건 처리시간 0.026초

소둔 및 용접후열처리가 슈퍼 오스테나이트계 스테인리스강의 부식거동에 미치는 영향 (Effects of Annealing and Post-weld Heat Treatments on Corrosion Behaviors of Super Austenitic Stainless Steel)

  • 윤덕빈;박진성;조동민;홍승갑;김성진
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.426-434
    • /
    • 2021
  • The effect of two different annealing temperatures on the level of the second phase precipitated in the microstructure and the corrosion behaviors of super austenitic stainless steel were examined. The sample annealed at a higher temperature had a significantly lower fraction of the sigma phase enriched with Cr and Mo elements, showing more stable passivity behavior during the potentiodynamic polarization measurement. However, after the welding process with Inconel-type welding material, severe corrosion damage along the interface between the base metal and the weld metal was observed regardless of the annealing temperature. This was closely associated with the precipitation of the fine sigma phase with a high Mo concentration in the unmixed zone (UMZ) during the welding process, leading to the local depletion of Mo concentrations around the sigma phase. On the other hand, the fraction of the newly precipitated fine sigma phase in the UMZ was greatly reduced by post-weld heat treatment (PWHT), and the corrosion resistance was greatly improved. Based on the results, it is proposed that the alloy composition of welding materials and PWHT conditions should be further optimized to ensure the superior corrosion resistance of welded super austenitic stainless steel.

Cu-7Al-2.5Si 합금의 기계적 및 내식특성에 미치는 열처리 효과 (Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy)

  • 이성열;원종필;박동현;문경만;이명훈;정진아;백태실
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.28-35
    • /
    • 2014
  • Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of $500^{\circ}C$ was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The ${\alpha}$, ${\beta}^{\prime}$ and ${\gamma}_2$ phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, ${\beta}^{\prime}$ and ${\gamma}_2$ phases decreased gradually with increasing the holding time at a constant temperature of $500^{\circ}C$. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that ${\gamma}_2$ phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the ${\gamma}_2$ phase with heat treatment. Consequently, it is suggested that the corrosion resistance of Cu-7Al-2.5Si alloy can be improved with the heat treatment as a holding time for 48 hrs at $500^{\circ}C$.

방청도료의 부식특성과 염분농도의 상관관계에 관한 연구 (A Study on Relationship between Corrosion Characteristics and Salt Concentration of Anti-corrosive Paint)

  • 문경만;이명우;이명훈;김혜민;백태실
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.95-103
    • /
    • 2018
  • Recently, many types of constructional steels have been often exposed to under severe corrosive environments due to acid rain with increasing environmental contamination. In order to inhibit their corrosion in severe corrosive environments, a painting method has been widely applied to numerous constructional steels of land as well as marine. Therefore, development of paint having a good quality of corrosion resistance is considered to be very important. In this study, four types of anti-corrosive paints (AP: Phenol epoxy, AC: Ceramic epoxy, AT: Coal tar epoxy, AH: High solid epoxy) were coated to the specimens, and then, were immerged in various salt solutions (0.1, 0.3, 3, 6, 9 and 15% NaCl solutions) for 11 days. And, the corrosion resistance of these samples by effect of osmotic pressure with salt concentration was investigated with electrochemical methods such as measurement of corrosion potential, impedance and corrosion current density. The corrosion current densities of all samples (AC, AT and AH) submerged in 3% NaCl solution exhibited the smallest values compared to other salt solutions. However, in the case of lower values of salt solutions than 3% NaCl solution, the corrosion current density increased again because it makes easier for water, dissolved oxygen and chloride ion etc. to invade toward inner side of coating film due to increasing of the osmotic pressure than 3% NaCl solution, but in the case of higher values of salt solutions than 3% NaCl solution, the coating film is easily deteriorated due to high concentration of chloride ion rather than the osmotic pressure, which resulted in increasing the corrosion current density. In particular, the AC sample indicated the best corrosion resistance in 6% NaCl solution compared to other samples. Consequently, it is considered that the corrosion mechanism of the coated steel plate is completely different from bare steel plate, and the corrosion resistance of coating film by osmotic pressure and chloride ion depend on various types of epoxy of paint in NaCl solution.

영구 지반앵커에 대한 부식의 영향 평가 (Evaluation of Corrosion Effects on Permanent Ground Anchors)

  • Park, Hee-Mun;Park, Seong-Wan
    • 한국지반공학회논문집
    • /
    • 제20권2호
    • /
    • pp.27-36
    • /
    • 2004
  • 극성저항 계측법과 전기화학 임피던스 분광학을 이용하여 영구적 지반 앵커의 부식율을 계측하는 절차를 제시하였다. 극성저항 계측법을 이용하여 대표지반의 종류와 철의 부식률에 관한 특성관계를 도출하였고, 전기화학 임피던스 분광학을 이용하여 시간의존 부식 반응과 다양한 종류의 코우팅 시스템의 평가, 그리고 시멘트 그라우팅이 부식에 미치는 영향에 대하여 각각 평가하였다. 실험 결과 점성토와 사질토의 pH 지수가 5이하인 경우 부식발생이 용이한 지반으로서 영구적 지반 앵커의 부식반응에 심각한 영향을 미치리라 판단된다. 또한 중성 또는 알카리성의 지반은 부식진행이 관찰되지 않았으며 부식률은 pH지수에 관계없이 일정한 결과를 보였다. 포설린 점성토의 경우 pH지수의 변화가 철의 부식에 매우 낮은 영향을 미쳤다. 한편 시멘트 그라우팅의 사용은 철의 부식율을 약 0.003-0.0lmm/y 정도로 낮출 수 있었으며 에폭시 혼합 코우팅의 경우도 부식의 영향을 받지않고 원 상태를 유지할 수 있어 매우 효과적으로 부식효과를 감소시킬 수 있었다.

해양 환경 하에서 431 스테인리스강의 하이브리드 실험을 통한 캐비테이션 손상 거동 (Cavitation Damage Behavior for 431 Stainless Steel by Hybrid Test in Sea Water)

  • 정상옥;김성종
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.271-276
    • /
    • 2013
  • The demand for stainless steel is continuously increasing with the development in offshore industry due to its excellent corrosion resistance characteristics. However, it suffers cavitation-erosion in application of high rotating fluid and the damage accelerates in combination with electrochemical corrosion because of Cl-ion in sea water. This paper investigated the complex damage behavior for 431 stainless steel, that is one of martensite stainless steels, through the hybrid test in sea water. Various experiments were carried out, including potential measurement, anodic/cathodic polarization experiment and Tafel analysis. Surface morphology was observed and damage depth was analyzed by SEM and 3D microscope after each experiment, respectively. The results revealed that more active potential was observed under cavitation condition than static condition due to breakdown of passive film and activation of charge transfer, and that higher corrosion current density was obtained under cavitation condition due to synergistic effect of corrosion and erosion.

A Study on the Corrosion and Degradation of Boiler Tubes Steel in Fossil Power Plant

  • Baik, Young Min;Jeong, Hee Don;Kweon, Young Gak
    • Corrosion Science and Technology
    • /
    • 제5권4호
    • /
    • pp.123-128
    • /
    • 2006
  • It was analyzed the causes of boiler tube rupture due to a degradation and corrosion on the boiler tubes in fossil power plant. The experiments were carried out among samples taken from the operating facilities. The result were analyzed based on experimental results from mechanical strength, microstructure observation, and hardness measurement in order to determine the cause of local rupture on boiler tubes. In general, 2.25Cr-1Mo steel generates carbides, it is coarsened, its ductility and strength abruptly decreased as degradation is in progress, In order to confirm this phenomenon, we observed changes of the mount of Cr and Mo of carbide by carrying out EDX chemical composition analysis. The amount of Cr and Mo in the degraded material or service exposed material gradually increased the amount of Mo but initially they were almost maintained at the same amount. Furthermore, we observed that the carbide become coarsened both in the grain and at the grain boundary. Tensile test was carried out to measure a material hardness and to recognize a drop-off of hardness. Overall result for tensile strength and hardness turned out to be lower than new material and mechanical strength and hardness was degraded as the material degradation was in progress.

중방식 도료의 내식성에 미치는 첨가제의 영향 (The Effect of Additive to Corrosion Resistance of Heavy Anti-Corrosive Paint)

  • 문경만;조황래;이명훈;김현명;이인원;전호환
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.65-70
    • /
    • 2007
  • There are many kinds of protection methods for marine structures, with varyingeconomical and environmental advantages. The coating protection method is being widely used in both continental and marine structures. In this study, by adding some additives, such as Zn powder(Zn), carbon black(CB) to epoxy anti-corrosive paint, the effect on the corrosion resistance was investigated throughan electrochemical method. The additive of Zn(20)+CB(10) showed the lowest passivity current density. Polarization resistance in both cyclic voltammogram and impedance measurement of an additive of Zn(20)+CB(10) was also the largest value, compared to other additives. Furthermore, rusting and bubbling was not observed on the surface of the test specimen with the additive of Zn(20)+CB(10), compared to other specimens. It is suggested that the corrosion resistance of the anti-corrosive paint can be improved by using some additives.

Zr기 비정질 합금 다이캐스팅 주조품의 부식 특성에 미치는 블라스팅 처리의 영향 (The Effect of Blasting Treatment on the Corrosion Characteristics in the Zr-based Amorphous Alloy Die Castings)

  • 이병철;김성규;박봉규;배차헌;박흥일
    • 한국주조공학회지
    • /
    • 제34권2호
    • /
    • pp.60-66
    • /
    • 2014
  • A Zr-based amorphous alloy specimen was produced by vacuum die casting process. The salt spray test was carried out using the specimens in the as-cast, $Al_2O_3$ and $ZrO_2$ particle blasted state. Using these specimens, the SEM-EDX and XRD analyses, DSC measurement and bending strength test were conducted. After the salt spray test, the specimens were not experienced phase change and thermal characteristics of the alloys were remained unchanged. In the as-cast specimen, corrosion products were not observed. However, in the $Al_2O_3$ particle blasted specimen, pitting corrosion occurred and the detected corrosion products were $ZrCl_2$ and $NaZrO_3$. Due to the salt spray test, bending strength of the $Al_2O_3$ blasted specimens showed about 100 MPa lower strength than the other specimens. The bending fracture surface was vein pattern which was shown typically in the amorphous alloys.

중방식 도료의 내식성에 미치는 첨가제의 영향 (The Effect of Additive to Corrosion Resistance of Heavy Anti-Corrosive Paint)

  • 문경만;이명훈;김현명;이인원;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.173-176
    • /
    • 2006
  • There are many kinds of protection methods for marine structures by using and environmental condition. Coating protection method, one of these methods is being widely adopted to both all ground and marine structures. In this study, by adding some additives such as Zn powder(Zn), carbon black(CB) to epoxy anti-corrosive paint, the effect to promote corrosion resistance was investigated with electrochemical method. Corrosion potentials with additives shifted to negative direction than no additive. However passivity current density increased than no additive except for Zn(20)+CB(10), especially, additive of Zn(20)+CB(10) showed the smallest passivity current density. Polarization resistance of Zn(20)+CB(10) by both cyclic voltammogram and impedance measurement was the largest value than other additives. And also surface phenomenon by adding Zn(20)+CB(10) was observed a good add condition not showing bubbling than other additives.

  • PDF

PWR환경에서 CF8M, CF8A 배관재의 부식피로특성 연구 (Corrosion Fatigue Characteristics of CF8M and CF8A on the PWR Condition)

  • 정일석;이용성;김상재;송택호;조선영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1062-1067
    • /
    • 2003
  • In this study, corrosion fatigue characteristics of CF8M and CF8A steel were investigated on the simulated PWR condition(Temp.:$316^{\circ}C$, Pres.: 15:MPa). To make the simulated PWR condition. the special test machine consisted of INSTRON, Autoclave, LOOP and Measurement system was developed. As ${\Delta}K$ is ranged from 11 to $20MPa{\sqrt{m}}$, Crack growth rate of PWR condition is faster than air condition. Above $20MPa{\sqrt{m}}$, the crack growth rate of PWR and air condition is similar. Corrosion fatigue characteristics regardless of the ferrite contents($10{\sim}25wt.%$) is not different. After the test, the fracture surface of specimens was examined. It was difficult to verify the fracture modes such as striation, intergranular crack and cleavage and so on. As the ferrite content of CF8M is increased, the more particles covered fracture surface were peeled.

  • PDF