• Title/Summary/Keyword: Corrosion level

Search Result 348, Processing Time 0.025 seconds

Relationship between Corrosion in Reinforcement and Influencing Factors Using Half Cell Potential Under Saturated Condition (습윤 상태에서의 반전위를 이용한 철근 부식과 영향 인자 간의 상관성 분석)

  • Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • In this study, the correlation between the influencing factors on corrosion and Half Cell Potential(HCP) measurement was analyzed considering the three levels of W/C ratio, cover depth, and chloride concentration. The HCP increased with enlarged cover depth, so it was confirmed that the increment of cover depth was effective for control of corrosion. Based on the criteria, the case of 60mm cover depth showed excellent corrosion control with under -200mV, indicating increase of cover depth is an effective method for reducing intrusion of external deterioration factors. When fresh water was injected to the upper part of specimens, very low level of HCP was monitored, but in the case that concentrations of chloride were 3.5% and 7.0%, HCP dropped under -200mV. In addition, the case with high volume of unit binder showed lower HCP measurement like increasing cover depth. Multiple regression analysis was performed to evaluate the correlation between the corrosive influence factors and HCP results, showing high coefficient of determination of 0.97. However, there were limitations such as limited number of samples and measuring period. Through the additional corrosion monitoring and chloride content evaluation after dismantling the specimen, more reasonable prediction can be achieved for correlation analysis with relevant data.

Application of Acoustic Emission for Assessing Deterioration in Reinforced Concrete Beams (철근 콘크리트 빔의 노화도 평가를 위한 음향방출 기술의 응용)

  • Yoon, Dong-Jin;Park, Phi-Lip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • The acoustic emission (AE) behavior of reinforced concrete beams tested under flexural loading was investigated to characterize and identify the source of damage. This research was aimed at identifying the characteristic AE response associated with micro-crack development, localized crack propagation, corrosion, and debonding of the reinforcing steel. Concrete beams were prepared to isolate the damage mechanisms by using plain, notched-plain, reinforced, and corroded-reinforced specimens. The beams were tested using four-point cyclic step-loading. The AE response was analyzed to obtain key parameters such as the time history of AE events, the total number and rate of AE events, and the characteristic features of the waveform. Initial analysis of the AE signal has shown that a clear difference in the AE response is observed depending on the source of the damage. The Felicity ratio exhibited a correlation with the overall damage level, while the number of AE events during unloading can be an effective criterion to estimate the level of corrosion distress in reinforced concrete structures. Consequently, AE measurement characterization appears to provide a promising approach for estimating the level of deterioration in reinforced concrete structure.

  • PDF

Electrochemical Studies on the Corrosion Performance of Steel Embeded in Activated Fly Ash Blended Concrete (활성화된 플라이애쉬 혼입콘크리트의 철근부식거동에 관한 전기화학적 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn Chu;Velu, Saraswathy
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.97-108
    • /
    • 2008
  • The use of fly ash to replace a portion of cement has resulted significant savings in the cost of cement production. Fly ash blended cement concretes require a longer curing time and their early strength is low when compared to ordinary Portland cement(OPC) concrete. By adopting various activation techniques such as physical, thermal and chemical method, hydration of fly ash blended cement concrete was accelerated and thereby improved the corrosion-resistance of concrete. Concrete specimens prepared with 10-40% of activated fly ash replacement were evaluated for their open circuit potential measurements, weight loss measurements, impedance measurements, linear polarization measurements, water absorption test, rapid chloride ion penetration test and scanning electron microscopy (SEM) test and the results were compared with those for OPC concrete without fly ash. All the studies confirmed that up to a critical level of 20-30% replacement; activated fly ash cement improved the corrosion-resistance properties of concrete. It was also confirmed that the chemical activation of fly ash better results than the other methods of activation investigated in this study.

Corrosion Monitoring of Reinforcing Bars in Cement Mortar Exposed to Seawater Immersion-and-dry Cycles (해수침지-건조 환경에 노출된 모르타르속 철근의 부식속도 평가)

  • Kim, Je-kyoung;Kee, Seong-Hoon;Yee, Jurng-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.10-18
    • /
    • 2018
  • The primary purposes of this study are to understand a fundamental aspect of current uniformity around a reinforcing bar (rebar) in cement mortar, and to develop an accurate monitoring method in a wet-dry cycling process with the alternative current (AC) impedance method. Three cement mortar specimens with two embedded rebars were prepared in the laboratory. As a main variable, the distance between two rebars was designed to be 10, 20 and 30 mm with the same thickness of 20 mm. To simulate the corrosion of rebars in concrete structures in a marine environment, three cement mortar specimens were exposed to 15 wet-drying cycles (24-hour-immersion in seawater and 48-hour-drying in a room temperature) in the laboratory. It was observed that the potential level shifted to a noble value during corrosion potential monitoring, which is attributed to acceleration of dissolved oxygen diffusion at the drying process. AC impedance was measured in a frequency range from 100 kHz to 1 mHz on a wet-drying process. A theoretical model was proposed to explain the interface condition between the rebars and cement mortar by using the equivalent circuit consisting of a solution resistance, a charge transfer resistance and a CPE (constant phase element). It was observed that the diffusion impedance appeared in a low frequency range as corrosion of rebars progresses. At the drying stage of the wet-drying cycles, the currents line for monitoring tended to be non-uniform at the interface of rebar/mortar, being phase shift, ${\theta}$, close to $-45^{\circ}$.

Effect of Concrete Water-Binder Ratio and Mineral Admixture on Corrosion Estimation by Electro-Chemical Method (콘크리트 물-결합재비 및 광물질 혼화재가 전기-화학적 기법에 의한 부식 평가에 미치는 영향)

  • Yang, Eun-Ik;Choi, Yoon-Suk;Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.75-81
    • /
    • 2010
  • In this study, when concrete properties are changed by concrete mix proportions or blending of admixtures, the characteristics of electro-chemical method for corrosion assessment of the embedded steel are compared and its causes are analyzed. According to the results, when the ratio of corroding area was less than 10%, the half-cell method was affected by concrete properties. In the case of specimen blended admixtures, it is possible to assess the high-corroded steel qualitatively using the half-cell method. For the polarization resistance method, though the corroding area was less than 10%, it has not affected by concrete properties. However, in case of specimen blended admixtures, the corrosion level of steel was underestimated than OPC specimens having a similar corroding area.

Influence of Gas Composition and Treatment Time on the Surface Properties of AISI 316L Austenitic Stainless Steels During Low-Temperature Plasma Nitrocarburizing Treatment (AISI 316L강의 저온 플라즈마침질탄화처리 시 가스조성과 처리시간이 표면특성에 미치는 영향)

  • Lee, In-Sup
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.716-721
    • /
    • 2009
  • The major drive for the application of low-temperature plasma treatment in nitrocarburizing of austenitic stainless steels lies in improved surface hardness without degraded corrosion resistance. The low-temperature plasma nitrocarburizing was performed in a gas mixture of $N_{2}$, $H_{2}$, and carbon-containing gas such as $CH_{4}$ at $450^{\circ}C$. The influence of the processing time (5~30 h) and $N_{2}$ gas composition (15~35%) on the surface properties of the nitrocarburized layer was investigated. The resultant nitrocarburized layer was a dual-layer structure, which was comprised of a N-enriched layer (${\gamma}_N$) with a high nitrogen content on top of a C-enriched layer (${\gamma}_C$) with a high carbon content, leading to a significant increase in surface hardness. The surface hardness reached up to about $1050HV_{0.01}$, which is about 4 times higher than that of the untreated sample ($250HV_{0.01}$). The thickness of the hardened layer increased with increasing treatment time and $N_{2}$ gas level in the atmosphere and reached up to about $25{\mu}m$. In addition, the corrosion resistance of the treated samples without containing $Cr_{2}N$ precipitates was enhanced than that of the untreated samples due to a high concentration of N on the surface. However, longer treatment time (25% $N_{2}$, 30 h) and higher $N_{2}$ gas composition (35% $N_{2}$, 20 h) resulted in the formation of $Cr_{2}N$ precipitates in the N-enriched layer, which caused the degradation of corrosion resistance.

Predicting the flexural capacity of RC beam with partially unbonded steel reinforcement

  • Wang, Xiao-Hui;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.235-252
    • /
    • 2009
  • Due to the reduction of bond strength resulting from the high corrosion level of reinforcing bars, influence of this reduction on flexural capacity of reinforced concrete (RC) beam should be considered. An extreme case is considered, where bond strength is complete lost and/or the tensile steel are exposed due to heavy corrosion over a fraction of the beam length. A compatibility condition of deformations of the RC beam with partially unbonded length is proposed. Flexural capacity of this kind of RC beam is predicted by combining the proposed compatibility condition of deformations with equilibrium condition of forces. Comparison between the model's predictions with the experimental results published in the literature shows the practicability of the proposed model. Finally, influence of some parameters on the flexural capacity of RC beam with partially unbonded length is discussed. It is concluded that the flexural capacity of the beam may not be influenced by the completely loss of bond of the whole beam span as long as the tensile steel can yield; whether or not the reduction of the flexural capacity of the beam resulting from the loss of bond over certain length may occur depends on the detailed parameters of the given beam.

Effects of Hydrogen on the PWSCC Initiation Behaviours of Alloy 182 Weld in PWR Environments

  • Kim, H.-S.;Hong, J.-D.;Lee, J.;Gokul, O.S.;Jang, C.
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.113-119
    • /
    • 2015
  • Alloy 82/182 weld metals had been extensively used in joining the components of the PWR primary system. Unfortunately, there have been a number of incidents of cracking caused by PWSCC in Alloy 82/182 welds during the operation of PWR worldwide. To mitigate PWSCC, optimization of water-chemistry conditions, especially dissolved hydrogen (DH) and Zn contents, is considered as the most promising and effective remedial method. In this study, the PWSCC behaviours of Alloy 182 weld were investigated in simulated PWR environments with various DH content. Both in-situ and ex-situ oxide characterizations as well as PWSCC initiation tests were performed. The results showed that PWSCC crack initiation time was shortest in PWR water (DH: 30cc/kg). Also, high stress reduced crack initiation time. Oxide layer showed multi-layered structures consisted of the outer needle-like Ni-rich oxide layer, Fe-rich crystalline oxide, and inner Cr-rich inner oxide layers, which was not altered by the level of applied stress. To analyse the multi-layer structure of oxides, EIS measurement were fitted into an equivalent circuit model. Further analyses including TEM and EDS are underway to verify appropriateness of the equivalent circuit model.

Analysis of Train Operation Obstacle Using Number of Failures and Delay Time of Electric Door System (전기식 도어시스템의 고장건수 및 지연시간을 활용한 열차운행장애 분석)

  • Lee, Bon Hyung;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.12-17
    • /
    • 2020
  • This paper analyzes functions of component parts of D-Urban Railway's door system along with operation obstacle risks on frequency(the number of occurrences/year) and severity(delay time/the number of occurrences). Based on this, the paper presents improvements and current system's problems after obstacle risks of EMU and door system are appled. The obstacle of door system causes corrosion of main parts such as DCU due to heat problem of operation environment, problems of maintenance methods and deterioration. DCUs on PCBs with more than 50% pattern corrosion cause problems. Even though the number of door system's obstacle occurrences for the last 5 years is 42, along with 104 minutes of operation obstacle, EMU operation obstacle risk is low(Level 1), which indicates there is limit in matrix of railway risks presented by the standard of railway safety management system. Therefore, it is necessary to have railway risk matrix suitable for the field. Finally, the paper deducts the obstacle risks through frequency and severity. Since 2017 when the risks of EMU and door system's obstacle, that of EMU has been 24(47% reduced) and that of door system has been average 9.5 per year(23% reduced).

Fuzzy Inference Based Design for Durability of Reinforced Concrete Structure in Chloride-Induced Corrosion Environment

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.157-166
    • /
    • 2005
  • This article involves architecting prototype-fuzzy expert system for designing the nominal cover thickness by means of fuzzy inference for quantitatively representing the environment affecting factor to reinforced concrete in chloride-induced corrosion environment. In this work, nominal cover thickness to reinforcement in concrete was determined by the sum of minimum cover thickness and tolerance to that defined from skill level, constructability and the significance of member. Several variables defining the quality of concrete and environment affecting factor (EAF) including relative humidity, temperature, cyclic wet and dry, and the distance from coast were treated as fuzzy variables. To qualify EAF the environment conditions of cycle degree of wet-dry, relative humidity, distance from coast and temperature were used as input variables. To determine the nominal cover thickness a qualified EAF, concrete grade, and water-cement ratio were used. The membership functions of each fuzzy variable were generated from the engineering knowledge and intuition based on some references as well as some international codes of practice.