• Title/Summary/Keyword: Corrosion characteristics

Search Result 1,415, Processing Time 0.027 seconds

A study on the improvement of frictional performance of friction material for automobile brake by spray treatment (용사처리에 의한 자동차 브레이크용 마찰재료의 마찰성능개선에 관한 연구)

  • 김윤해;배창원;손태관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.67-76
    • /
    • 1998
  • Friction materials for brake linings and clutches have severe performance requirements. The principal function of such frictional elements is to convert kinetic energy to heat, and then either to absorb or to dissipate heat. In order to achieve these objectives, the coefficient of friction must be as high as possible, independent of variations in operating conditions, and the necessary energy conversion must be accomplished with a minimum of wear on the contacting parts. In this study, Al powder, Al bronze powder and Mo powder used in general for automobile brake was sprayed on automobile brake disc to restrain rust and to maintain friction performance. Dynamo and corrosion tests have been carried out. It is concluded that the sprayed disc with Al bronze powder has the most improved frictional performance and anti-corrosive characteristics. The main results obtained can be summarized as follows; 1. From the corrosion current density test for gray cast iron and sprayed disc with powders of Al, Al bronze and Mo, it was cleared that the spray treatment with Al bronze powder showed the most superior anti-corrosive characteristics than other powders. 2. By anode polarization toward the noble direction from corrosion potential, corrosion current density with sprayed brake disc by Al-bronze powder was the lowest. 3. Mean frictional coefficients obtained from dynamo test are as follows : the sprayed disc with Al(99.99%) powder was 0.190 ; the sprayed disc with Al-bronze powder was 0.312 ; the sprayed disc with Mo powder was 0.257 ; the non-sprayed disc of gray cast iron was 0.331. In the case of the sprayed disc Al-bronze powder showed the most excellent frictional characteristics . 4. Amount of burnish quantity obtained from burnish test by dynamometer is as follows : the sprayed disc with Al-powder was 1.079 mm : the sprayed disc with Al-bronze powder was 0.155 mm : the sprayed disc with Mo powder was 0.253 mm : the non-sprayed disc of gray cast iron was 0.241 mm. Al-bronze powder also showed the most excellent burnish characteristics.

  • PDF

A Study on the Characteristics of Local Corrosion for Gas Absorption Refrigeration and Hot Water Systems in LiBr-$H_2O$ Working Fluids (LiBr작동유체 중에서 가스흡수식 냉온수기의 국부부식 특성에 관한 연구)

  • Uh- Joh Lim;Ki-Cheol Jeong;Byoung-Du Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.714-720
    • /
    • 2003
  • Due to the electric power shortage in summer season and regulation of freon refrigerant, the application of gas absorption refrigeration and hot water systems are considerably increasing trend. But, this system consists of condenser, heat exchanger, supply pipe and radiator etc. which are easily corroded by acidity and dissolved oxygen and gases. In result, this system occurs scale attachment and corrosion damage like pitting and crevice corrosion. In this study, electrochemical polarization test of heat exchanger tubing material (copper, aluminium brass, 30% cupronickel(30% Cu-Ni)) was carried out in 60% lithium bromide solution at $95^{\circ}C$. As a result of polarization test, corrosion behavior by impressed potential and local corrosion. such as galvanic corrosion, pitting corrosion behavior, of tubing materials was investigated. The main results obtained are as follows: (1) The effect of pitting and crevice corrosion control of 30% cupronickel in 60% LiBr solution at $95^{\circ}C$ is very excellent. (2) Dissimilar metal corrosion of 30% cupronickel coupling to aluminium bronze is the most sensitive. (3) Current density behavior of tube materials by impressed potential is high in order of copper > aluminium brass > 30% cupronickel.

Study on the Prevention of Crevice Corrosion for a Stainless Steel Heat Exchanger (스테인리스강 열교환기의 틈부식 방지에 관한 연구)

  • LIM, U-Joh;YUN, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.1
    • /
    • pp.106-114
    • /
    • 2005
  • This paper is a study on the prevention of crevice corrosion for a stainless steel heat exchanger in various pH solutions and with Cl ion concentrations. The electrochemical polarization test and crevice corrosion test of STS 304 for a heat exchanger were carried out. The crevice corrosion aspect, a passive behavior, crevice corrosion behavior, and corrosion protection characteristics of STS 304 using Al-alloy and Mg-alloy galvanic anode were considered. The main results are as follows: 1. The crevice corrosion of STS 304 occurs in the crevice and this corrosion increases pitting according to depth direction. On the other hand, the exterior crevice becomes passive. 2. With changing from a neutral to acid environment and increasing Cl ion concentration, the pitting potential of STS 304 lowers, and thus the crevice corrosion of STS 304 is sensitive. 3. The cathodic protection potential of STS 304 in the crevice is cathodically polarized by increasing Cl ion concentration. Therefore, an Al-alloy galvanic anode is more suitable than a Mg-alloy galvanic anode to protect the crevice corrosion of STS 304.

Study on the Control of the Erosion-Corrosion for Ni-Cr Alloy Sprayed Coating in the Marine Environment (해양환경 중에서 Ni-Cr 용사피복재의 침식-부식 억제에 관한 연구)

  • Lim, U.J.;Lee, S.Y.;Yun, B.D.
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.11 no.2
    • /
    • pp.139-149
    • /
    • 1999
  • Thermal sprayed Ni-Cr alloy coating on the carbon steel was carried out erosion-corrosion test and electrochemical corrosion test in the marine environment. The erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Ni-Cr coating was investigated. The erosion-corrosion control efficiency of Ni-Cr coating to substrate was also estimated quantitatively. The main results obtained are as follows : 1) The weight loss rate of Ni-Cr coating layer by the erosion-corrosion compared with substrate was smaller. With the lapse of time, the weight loss rate of substrate was linearly increased in $25{\Omega}{\cdot}cm$ solution, but that of Ni-Cr coating became stable. 2) The corrosion potential of substrate became less noble than that of Ni-Cr coating layer, and the corrosion current density of Ni-Cr coating became lower than that of substrate. 3) The control efficiency of erosion-corrosion of Ni-Cr coating compared to substrate became more dull than that of corrosion in $25{\Omega}{\cdot}cm$ and $5000{\Omega}{\cdot}cm$ solution.

  • PDF

Evaluation of Corrosion Tendency for S355ML Steel with Seawater Temperature (해수 온도에 따른 S355ML 강재의 부식 경향 평가)

  • Jang, Seok Ki;Lee, Seung Jun;Park, Jae Cheul;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.232-238
    • /
    • 2015
  • Corrosion is of greatest concern for metallic materials exposed to corrosive seawater or aggressive marine atmospheres. Marine structures and components made of metallic materials incur an initial cost and additional large costs for corrosion control and maintenance. There have been worldwide efforts to minimize marine corrosion and extend service life of the materials. It is believed that various factors are associated with corrosion of marine grade metallic materials, particularly the temperature of the solution affecting the corrosion rate by changing dissolved oxygen solubility and concentrations of chloride. In the present study, the electrochemical characteristics of S355ML steel are investigated to identify corrosion acceleration tendencies with changes in solution temperature under marine environments. It was found that increasing seawater temperature, promoted not only activation of chloride ion transfer, but also the formation of porous $Fe(OH)_3$ or $Fe_2O_3$, leading to the acceleration of corrosion.

Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere (해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식)

  • Boo, Myung-Hwan;Lee, Jang-Wook;Lee, Jong-Hoon
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

Effects of Chloride Concentration and Applied Current Density on Stray Current Corrosion Characteristics of 6061-T6 Al Alloy for Electric Vehicle Battery Housing (전기자동차 배터리 하우징용 6061-T6 알루미늄합금의 전식 특성에 미치는 염화물농도 및 인가전류밀도의 영향)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.348-359
    • /
    • 2022
  • Interest in electric vehicle is on the rise due to global eco-friendly policies. To improve the efficiency of electric vehicles, it is essential to reduce weights of components. Since electric vehicles have various electronic equipment, the research on stray current corrosion is required. In this research, a galvanostatic corrosion experiment was performed on 6061-T6 Al alloy for electric vehicle battery housing using chloride concentration and applied current density as variables in a solution simulating an acid rain environment. As a result of the experiment, when chloride concentration and applied current density were increased, corrosion damage became larger. In particular, pitting damage was dominant at an applied current density of 0.1 mA/cm2. Pitting damage over the entire surface was found at a current density of 1.0 mA/cm2. In conclusion, chloride concentration had a relatively large effect on localized corrosion. The applied current density had a great effect on uniform corrosion. However, in the case of applied current density, localized corrosion was also greatly affected by interaction with chloride.

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Galvanic Corrosion Between Component Parts of Aluminum Alloys for Heat Exchanger of Automobile

  • Y. R. Yoo;D. H. Kim;G. B. Kim;S. Y. Won;S. H. Choi;Y. S. Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.322-329
    • /
    • 2023
  • There are a variety of heat exchangers used in automobiles, such as shell and tube heat exchangers, double tube heat exchangers, and plate heat exchangers. Most of them are water-cooled to prevent engine overheating. There have been reports of corrosion damage to these heat exchangers due to continuous wetting caused by external temperature differences, road pollutants, and snow removal. In addition, galvanic corrosion, which occurs when two dissimilar materials come into contact, has been identified as a major cause. In this study, corrosion characteristics and galvanic corrosion behavior of Al alloy (AA3003, AA4045 and AA7072) used in automobile heat exchangers were analyzed. Effective clad materials for heat exchanger tubes and fins were also evaluated. It was found that AA7072 should be applied as the cladding material for fin AA3003 and that AA4045 was suitable as a cladding material for tube AA3003 because this clad materials application was the most effective clad design to delay the occurrence of pinhole in the tube. Main factors influencing galvanic corrosion dissolution were found to be galvanic corrosion potential difference and galvanic corrosion current density.

Electrochemical Corrosion Characteristics of the Iron-based Damping Alloy (철기제진합금의 전기화학적 부식특성)

  • Shim, Hyun Yee;Jee, Choong Soo;Lee, Jin Hyung;Lee, Kyu Hwan;Shin, Myung Chul
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.85-90
    • /
    • 1995
  • Corrosion characteristics of 4 kinds of the Fe-Al damping alloys has been studied in the 3.5% NaCl solution and compared with a cold rolled mild steel and pure Ti, No passivation, besides Ti, was observed in the Fe-Al damping alloys and a cold rolled mild steel. Corrosion rate was decreased with lower carbon concentration. In the case of Mn addition for improving damping capacity, corrosion rate was decreased in scrap iron but was not decreased in electrolytic iron. It has been shown that corrosion rate of Fe-Al damping alloys lays between that of the pure Ti and that of a cold rolled mild steel.

  • PDF