• Title/Summary/Keyword: Corrosion characteristics

Search Result 1,422, Processing Time 0.02 seconds

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Detection and Control of Bacterial Diseases of Cultured Fishes in Korea (양식어류(養殖魚類)의 세균성질병(細菌性疾病)의 진단(診斷)과 대책(對策))

  • Chun, Seh-Kyu
    • Journal of fish pathology
    • /
    • v.1 no.1
    • /
    • pp.5-30
    • /
    • 1988
  • This is a comprehensive study for considering the effective treatment and control program of bacterial disease occurring in common carp, israel carp, color carp, crucian carp, eel and tilapia by clarifying the causes, mechanism of infection and onset and the diagnostic criteria. As a first step, the authors investigated the external views, gross and histopathologic findings of diseased fish using 450 infected fishes obtained from various farmer of Korea. This infection was characterized by hyperemia, hemorrhage and swelling of body surface and fins, congestion of liver, spleen, kidney, inflammation of intestine, hemorrhagic inflammation of various tissues, and necrosis and ulcer of various tissues were accompanied in serious cases. Bacteriologically, Aeromonas hydrophila and Edwardsiella tarda were isoiated from these fishes. Particularly in the regular check on 222 eels, 177 strains were isolated as 29.94% of Aeromonas hydrophila, 48.58% of Edwardsiella tarda and 21.47% of Flexibacter columnaris. Hexibacter columnaris was isolated from corroded gill of eels. The identical disease was occurred by innoculating the isolated Aeromonas hydrophila and Edwardsiella tarda and the identical strains were isolated from infected experimental fishes. The eels which were diagnosed Aeromonas disease from Kwangju, Pusan accompanied hemorrhage, swelling of body surface and fins, inflammation of stomach and intestine containing mucous fluids mixed with the pathogens. Color carp and crucian carp which were innoculated with the isolated 5 strins of Aeromomas hydrorphil died within 3 or 4 days accompanying with the characteristics of Aeromonas disease. Edward disease was characterized by abscesses of body surface, pus formation with concentration on phagocytes. The size of absecsses increased with progression elf disease. There were also various abscesses at internal organ and white nodules appeared in kidney. Histologically, various progressive granuloma were examined without inflammation of intestine. Columnaris disease of eels showed no hemorrhage except slight white body color. In autopsy, most of internal organs appeared normal and there were no septic odors. The only character was corrosion of gills. In order to treat these bacterial diseases, infected fishes must bathe in 20ppm chloramphenicol or kanamycin solution for 1 hour. Besides, medication program in oral ingestion of 75mg/kg chloramphenicol per day continuing for 5 to 7 days. After injecting the formalin treated Aermonas hydrophila antigen into carp, relatively high agglutination titer showed between 3 weeks and 6 weeks. Though this titer decreased from that time, it was continued for 18 weeks. In the case of injecting the formalin treated Edwardsiella tarda antigen into tilapia, the titer also increased. But tilapia which were immersed in the suspension fluid of the formalin treated Edwardsiella tarda showed no increase of the titer.

  • PDF