• Title/Summary/Keyword: Corrosion characteristics

Search Result 1,415, Processing Time 0.026 seconds

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.

Stochastic investigation on three-dimensional diffusion of chloride ions in concrete

  • Ye Tian;Yifei Zhu;Guoyi Zhang;Zhonggou Chen;Huiping Feng;Nanguo Jin;Xianyu Jin;Hongxiao Wu;Yinzhe Shao;Yu Liu;Dongming Yan;Zheng Zhou;Shenshan Wang;Zhiqiang Zhang
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.247-261
    • /
    • 2023
  • Due to the non-uniform distribution of meso-structure, the diffusion of chloride ions in concrete show the characteristics of characteristics of randomness and fuzziness, which leads to the non-uniform distribution of chloride ions and the non-uniform corrosion of steel rebar in concrete. This phenomenon is supposed as the main reason causing the uncertainty of the bearing capacity deterioration of reinforced concrete structures. In order to analyze and predict the durability of reinforced concrete structures under chloride environment, the random features of chloride ions transport in concrete were studied in this research from in situ meso-structure of concrete. Based on X-ray CT technology, the spatial distribution of coarse aggregates and pores were recognized and extracted from a cylinder concrete specimen. In considering the influence of ITZ, the in situ mesostructure of concrete specimen was reconstructed to conduct a numerical simulation on the diffusion of chloride ions in concrete, which was verified through electronic microprobe technology. Then a stochastic study was performed to investigate the distribution of chloride ions concentration in space and time. The research indicates that the influence of coarse aggregate on chloride ions diffusion is the synthetic action of tortuosity and ITZ effect. The spatial distribution of coarse aggregates and pores is the main reason leading to the non-uniform distribution of chloride ions both in spatial and time scale. The chloride ions concentration under a certain time and the time under a certain concentration both satisfy the Lognormal distribution, which are accepted by Kolmogorov-Smirnov test and Chi-square test. This research provides an efficient method for obtain mass stochastic data from limited but representative samples, which lays a solid foundation for the investigation on the service properties of reinforced concrete structures.

Interpretation of Making Techniques through Surface Characteristic Analysis and Non-destructive Diagnosis for the Gilt-bronze Seated Buddha in Dangjin Sinamsa Temple, Korea (당진 신암사 금동여래좌상의 표면특성 분석과 비파괴 정밀진단을 통한 제작기술 해석)

  • CHOI Ilkyu ;YANG Hyeri ;HAN Duru;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.100-116
    • /
    • 2023
  • The Sinamsa Temple was built in the late Goryeo Dynasty and a gilt-bronze seated Buddha is enshrined in Geungnakjeon hall in the precinct. Various damages occurred in the gilt layer of the Buddha, such as peeling of the gilt layer and deteriorating gloss. In the study, the conservation conditions of the inside and outside on the statue were accurately investigated, and the making technique was interpreted through the material characteristics and non-destructive diagnosis of the statue. As a result, it is estimated that gold-gilding layer is pure gold, coloration pigment of black is carbon, green is malachite, atacamite and verdigris, red is red lead and cinnabar, respectively. In the deterioration evaluation, peeling, cracking, break out and exfoliation of the gilt layer are confirmed as damages, but the conservation condition is relatively wholesome. However, the gloss of the gilt layer is calculated to be wider in the poorer part than the maintenance part. The ultrasonic velocity of the statue was calculated to be 1,230 to 3,987 (mean 2,608) m/s and showed a relatively wide range. In infrared thermography, peeling was not confirmed, and no special bonding marks were found. In endoscope, some biological damage and corrosion were observed on the surface of the internal metal, and sealed artifacts were identified. Manufacturing technique based on the study, it is considered that the gilt-bronze seated Buddha was cast at once, and the mold was inverted to inject molten metal.

Influence of Water-Cement Ratios and Curing Conditions on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 물-시멘트비 및 양생조건의 영향)

  • Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.753-759
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. Of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-cement (W/C) ratio, age, curing conditions, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of W/C ratio and curing conditions on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. In the test, the voltages passing through the diffusion cell were measured by accelerated test method using potential difference, and then with the consideration of IR drop ratio the diffusion coefficient of chloride ion for concrete with different W/C ratios were estimated by Andrade's model. Furthermore, under different curing conditions formulas for the estimation of the diffusion coefficient of chloride ion have been proposed by the regression analysis considering the effect of W/C ratio and age.

THE BOND CHARACTERISTICS OF PORCELAIN FUSED BY TITANIUM SURFACE MODIFICATION (타이타늄의 표면개질에 따른 도재 결합 특성)

  • Choi, Taek-Huw;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.169-181
    • /
    • 2007
  • Statement of problem: Titanium is well known as a proper metal for the dental restorations, because it has an excellent biocompatibility, resistance to corrosion, and mechanical property. However, adhesion between titanium and dental porcelains is related to the diffusion of oxygen to the reaction layers formed on cast-titanium surfaces during porcelain firing and those oxidized layers make the adhesion difficult to be formed. Many studies using mechanical, chemical and physical methods to enhance the titanium-ceramic adhesion have been actively performed. Purpose: This study meant to comparatively analyse the adhesion characteristics depending on different titanium surface coatings after coating the casts and wrought titanium surfaces with Au and TiN. Material and method: In this study, the titanium specimens (CP-Ti, Grade 2, Kobe still Co. Japan) were categorized into cast and wrought titanium. The wrought titanium was cast by using the MgO-based investment(Selevest CB, Selec). The cast and wrought titanium were treated with Au coating($ParaOne^{(R)}$., Gold Ion Sputter, Model PS-1200) and TiN coating(ATEC system, Korea) and the ultra low fusing dental porcelain was fused and fired onto the samples. Biaxial flection test was done on the fired samples and the porcelain was separated. The adhesion characteristics of porcelain and titanium after firing and the specimen surfaces before and after the porcelain fracture test were observed with SEM. The atomic percent of Si on all sample surfaces was comparatively analysed by EDS. In addition, the constituents of specimen surface layers after the porcelain fracture and the formed compound were evaluated by X-ray diffraction diagnosis. Result: The results of this study were obtained as follows : 1. The surface characteristics of cast and wrought titanium after surface treatment(Au, TiN, $Al_2O_3$ sandblasting) were similar and each cast and wrought titanium showed similar bonding characteristics. 2. Before and after the biaxial flection test, the highest atomic weight change of Si component was found in $Al_2O_3$ sandblasted wrought titanium(28.6at.% $\rightarrow$ 8.3at.%). On the other hand, the least change was seen in Au-Pd-In alloy(24.5at.% $\rightarrow$ 9.1at.%). 3. Much amount of Si components was uniformly distributed in Au and TiN coated titanium, but less amount of Si's was unevenly dispersed on Al2O3 sandblasting surfaces. 4. In X-ray diffraction diagnosis after porcelain debonding, we could see $Au_2Ti$ compound and TiN coating layers on Au and TiN coated surfaces and $TiO_2$, typical oxide of titanium, on all titanium surfaces. 5. Debonding of porcelain on cast and wrought titanium surface after the biaxial flection is considered as a result of adhesion deterioration between coating layers and titanium surfaces. We found that there are both adhesive failure and cohesive failure at the same time. Conclusion: These results showed that the titanium-ceramic adhesion could be improved by coating cast and wrought titanium surfaces with Au and TiN when making porcelain fused to metal crowns. In order to use porcelain fused to titanium clinically, it is considered that coating technique to enhance the bonding strength between coating kKlayers and titanium surfaces should be developed first.

A Fundamental Study on the Effect to Build up a Vegetation Strip at Stream Confluence by Using Reed Mat (하천합류부에서 갈대매트를 이용한 하천식생대 조성에 대한 기초적 연구)

  • Chung, Kyung-Jin;Kim, Mi-Kyeong;An, Won-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.62-73
    • /
    • 2003
  • The study was to apply a mat style reed planting method at confluence to improve plants growth conditions by relaxing disturbed topographical base due to water flow and was intended to review the effect to build up a vegetation strip by monitoring process after the construction. First off, We've attempted to construct reed mats on selected sites as confluences of Tan and Gaehwa stream and then examined and analyzed characteristics of soil and vegetation community. As the results of the examination, the soil texture was proven to be a mix of sand and loamy sand and be 6.3 ~ 7.0 soil pH. In addition, it contained 1.0 ~ 4.6% of organic matter, 0.04 ~ 0.22% of T-N and 27.8 ~ 41.2% of water content. For its vegetation structure, the Tan stream confluence was first actually a point bar without plants prior to the construction but 8 kinds of hygrophytes including Persicaria hydropiper and 9 kinds of terrestrial plants such as Potentilla supina, Artemisia annua, and Alopecurus aequalis var. amurensis. On the other hand, the Gaehwa stream confluence contained 6 kinds of hygrophytes such as Bidens frondosa and other 11 kinds of terrestrial plants prior to the construction while it produced 7 kinds of hygrophytes including Ranunculus ternatus as well as Phragmites australis and 9 kinds of terrestrial plants such as Potentilla supina after the construction. For the Phragmites australis, almost of them was weathered away in early days just after planting because of development period passed, but on May, six months later from planting, it was investigated that its length was approximated as 65 ~ 85cm with 75% coverage and that the number of it was 437 ~ 633/$m^2$. The study was shown that reed mats can improve environmental conditions of disturbed topographical base, enabling natural growth of various riparian vegetation including the introduced plant, reed. In the meantime, it was supposedly judged that to recover or build up a vegetarian strip, supplementary materials should be prepared to help produce and grow plants because it is not probable to expect river drift by water flow at confluence and that corrosion, burying or inundation owing to changes of water lever should be considered.

Analytical Research on Flexural Strengthened by FREP of RC Structure (RC 구조물의 FREP 휨 보강을 위한 해석적 연구)

  • Kang Sung-Hoo;Park Sun-Joon;Kim Min-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.493-500
    • /
    • 2004
  • FREP(Fiber Reinforced Epoxy Panel) are used for strengthening the damaged RC beams due to its good tensile strength, low weight, resistance to corrosion, and easy applicability. This study sets up structure equation for FREP bending reinforcement before and during the usage of RC beam. It finds the difference and finds the mechanical characteristics of rip-off failure that is caused by stress concentration in reinforcement material cutting part to estimate the performance of bending reinforcement. The result of this research can be summarized as two main consequences. The main failure of FREP reinforced concrete beam is rip-off failure and it evaluated rip-off failure of RC reinforcing bean based on the test and analytical conditions of this study. It found that stress was concentrated due to rapid change of bending rigidity in reinforced cutting part as a result of excessive reinforcement thickness of FREP. It resulted in rip-off failure. It means that it should evaluate the rip-off failure when designing reinforcement. It analyzed the reinforcement effect according to reinforced period for FREP. It found that reinforcement effect of P-Type that was reinforced during the usage decreased compared to I-Type that was reinforced before the usage. So when reinforcing a existing structure that is being used, it should consider the stress that is produced due to the fixed load.

A Study on the Base Properties of Nickel Type-Antifungal Agent for Reinforced Concrete Hume Pipe Lining (철근콘크리트흄관 라이닝용 니켈계 방균제의 기초적 특성 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.41-47
    • /
    • 2010
  • It has been continuously noted that many sewage treatment concrete structures have deteriorated due to sulfur-oxidizing bacteria. There have been many reports on approaches to protecting concrete from this bacteria corrosion. The purpose of this study is to evaluate the inhibition of growth of a sulfur-oxidizing bacterium by a antifungal agent such as $NiSO_4{\cdot}6H_2O$, and the characteristics of polymer cement mortar using nickel type antifungal agent. First, we developed antifungal agents using metal nickel and $NiSO_4{\cdot}6H_2O$ to inhibit the growth of thiobacillus novellus, which is the sulfur-oxidizing bacteria in concrete. Then, ordinary cement mortar and polymer cement mortar using nickel type antifungal agent with various polymer-cement ratios, and antifungal agent content were prepared, and were tested for the antifungal adding effect, compressive and flexural strengths, expansion and leaching of nickel ion. From the test results, it was confirmed that the adding of an antifungal agent has an inhibition effect on the growth of sulfur-oxidizing bacteria at antifungal agent contents of 20 mM or more. In addition, the strengths and expansion of polymer cement mortars are not significantly changed by the addition of an antifungal agent. Therefore, the nickel-type antifungal agent developed in this study can be used to improve the durability of reinforced concrete hume pipe in the construction industry.

A Study on the Characteristics of the Residual Stress Distribution of Steel Structural Members (용접(鎔接) 강구조(鋼構造) 부재(部材)의 잔류응력(殘留應力) 특성(特性)에 관한 연구(研究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.93-101
    • /
    • 1987
  • Residual stresses have remained around welding areas of a steel structure member after welding operation. The major causes to occur these residual stresses are the local heat due to a welding, the heat stresses due to a irregular and rapid cooling condition, the material and rigidity of a steel structure. Ultimatly, these residual stresses have been known to decrease a brittle fracture strength, a fatigue strength, a buckling strength, dynamic properties, and the corrosion resistance of the material. This paper deals with the residual stresses on a steel structure member through experimental studies. SWS 58 plates were welded by the method of X-groove type. These plates were layed on the heat treatment at four different temperatures; $350^{\circ}C$, $500^{\circ}C$, $650^{\circ}C$ and $800^{\circ}C$. The resulting residual Stresses were measured by hole drilling method, and the followings were obtained. The residual stresses on the vicinity of a welding point were relieved most effectively at the temperature of $650^{\circ}C$, and these stresses relieved completly when the ratio of a hole diamerter to a hole depth became unity. Hardness test shows that the higher value of hardness at the heat affected zone dropped to belower as the temperature went up from $350^{\circ}C$ to $800^{\circ}C$. The Welding input heats have not influenced the magnitude of residual stresses at the input heat range between above and below one forth than standard.

  • PDF