• Title/Summary/Keyword: Corrosion addition

Search Result 860, Processing Time 0.02 seconds

Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

  • Lee, Woo Yong;Koh, Seong Ung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.39-44
    • /
    • 2005
  • The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. However, corrosion rate was not directly related to SSC susceptibility of steels.

Ultimate strength performance of tankers associated with industry corrosion addition practices

  • Kim, Do Kyun;Kim, Han Byul;Zhang, Xiaoming;Li, Chen Guang;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.507-528
    • /
    • 2014
  • In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSR-H) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures.

Effect of Sn Addition on Corrosion Behavior of Mg-4%Zn Casting Alloy (Mg-4%Zn 주조 합금의 부식 거동에 미치는 Sn 첨가의 영향)

  • Han, Jin-Gu;Jun, Joong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.37 no.3
    • /
    • pp.63-70
    • /
    • 2017
  • In the present study, effects of an addition of Sn on the microstructure and corrosion behavior were investigated in Mg-4%Zn-(0-3)%Sn casting alloys. With an increase in the Sn content, the ${\alpha}-(Mg)$ dendritic cell size was reduced, whereas the total amount of precipitates increased due to the formation of the $Mg_2Sn$ phase. It was found in immersion and electrochemical corrosion tests that the addition of Sn has a detrimental effect on the corrosion resistance of the Mg-4%Zn alloy. Microstructural examinations of the corrosion product and the corroded surface indicated that an accelerated micro-galvanic effect by the $Mg_2Sn-phase$ particles and a less protective corrosion product on the surface were responsible for the increased corrosion rate at a higher Sn content.

Corrosion Inhibition of Steel by Addition of Birch Sap in Chloride Solution (염화물 수용액에서 자작나무 수액을 이용한 철강의 부식 억제)

  • Park, Tae-Jun;Kim, Ki Ae;Lee, Ji Yi;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.225-230
    • /
    • 2018
  • The effects of birch sap, a possible natural corrosion inhibitor, on the corrosion behavior of steel in chloride solution were investigated. The corrosion rate was significantly reduced by the addition of 1~5 mL of birch sap to 500 mL of 3wt% NaCl or 3wt% $CaCl_2$ solution. A remarkable increase in the pitting potential in NaCl solution was observed by the addition of birch sap although it was almost constant in $CaCl_2$ solution. The corrosion rate of steel in both NaCl and $CaCl_2$ birch sap solution without addition of water was higher compared to that of aqueous solution without birch sap as the pH of the birch sap was 4.0. The presence of organic compounds like, fructose, galactose, glucose, and palmitic acid in the birch sap are thought to be adsorbed effectively on the metal surface, which provided corrosion protection. However, the inorganic elements including Na, Ca, K, Mg, Mn, S, etc. present in the birch sap exhibited no role in corrosion inhibition.

Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

  • Kim, K.T.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.171-181
    • /
    • 2016
  • In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

Effects of Alloying Elements on the Surface Characteristics of Fe-38Al Intermetallic Compounds (Fe-38 at.% Al계 금속간화합물의 표면특성에 미치는 합금원소의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • Effects of alloying elements on the surface characteristics of Fe-38Al intermetallic compounds were investigated using potentiostat. The specimens were casted by the vacuum arc melting. The subsequent homogenization and the stabilization led to the homogeneous DO$_3$ structure of the specimen. After the corrosion tests, the surface of the tested specimen was observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-38 at.% Al intermetallic compound, the addition of Cr and Mo proved to be beneficial in decreasing the grain boundary attack by decreasing the active current density. Addition of Band Nb resulted in a higher active current density and also a higher passive current density. These results indicated the role of Cr and Mo in improving the pitting corrosion resistance of Fe-38 at.%Al intermetallic compound. Band Nb addition to Fe-38 at.%Al accelerated the granular corrosion. Fe-38 at.%Al containing Cr and Mo showed remarkably improved pitting corrosion resistance in comparison with Band Nb addition to Fe-38 at. %Al.

Effects of Plasma-Nitriding on the Pitting Corrosion of Fe-30at%Al-5at%Cr Alloy (Fe-30at.%Al-5at.%Cr계 합금의 공식특성에 미치는 플라즈마질화의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.480-490
    • /
    • 2003
  • Effects of plasma-nitriding on the pitting corrosion of Fe-30at%Al-5at%Cr alloy containing Ti, Hf, and Zr were investigated using potentiostat in 0.1M HCl. The specimen was casted by the vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at $1000^{\circ}C$ for 7days and phase stabilizing heat treatment was carried out in Ar gas atmosphere at $500^{\circ}C$ for 5 days. The specimen was nitrided in the $N_2$, and $H_2$, (1:1) mixed gas of $10^{-4}$ torr at $480^{\circ}C$ for 10 hrs. After the corrosion tests, the surface of the tested specimens were observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-30at%Al-5Cr alloy, the addition of Hf has equi-axied structure and addition of Zr showed dendritic structure. For Fe-30at%Al-5Cr alloy containing Ti, plasma nitriding proved beneficial to decrease the pitting corrosion attack by increasing pitting potential due to formation of TiN film. Addition of Hf and Zr resulted in a higher activation current density and also a lower pitting potential. These results indicated the role of dendritic structure in decreasing the pitting corrosion resistance of Fe-30Al-5Cr alloy. Ti addition to Fe-30Al-5Cr decreased the number and size of pits. In the case of Zr and Hf addition, the pits nucleated remarkably at dendritic branches.

Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

  • Kim, K.T.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.

Development of Metallic Bipolar Plate Material with W-addition in Austenitic Stainless Steel for PEMFC Environment

  • Kim, Kwang Min;Koh, Sung Ung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.153-159
    • /
    • 2006
  • Austenitic stainless steels with addition of various amounts of Mo and W were evaluated in terms of corrosion and contact resistance to determine optimum alloy composition of metallic bipolar plate for PEMFC. The corrosion property was evaluated by both acid fume exposure test at $130^{\circ}C$ and by electrochemical polarization tests in $H_3PO_4$ solution at $80^{\circ}C$. Austenitic stainless steel with proper amount of Mo and W demonstrated not only good corrosion resistance but also low contact resistance. Analyses on the passive film show that partial substitution of Mo by W enhances passive film stability and repassivation property. Test results suggest that austenitic stainless steel with 2 wt%Mo and 4 wt%W has optimum composition for metallic bipolar plate used in PEMFC.

The Corrosion Inhibition Characteristics of Sodium Nitrite Using an On-line Corrosion Rate Measurement System (온라인 부식속도 측정 시스템을 이용한 아질산 나트륨의 금속 부식억제 특성 연구)

  • Park, Mal-Yong;Moon, Jeon-Soo;Kang, Dae-Jin
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.85-92
    • /
    • 2015
  • An on-line corrosion rate measurement system was developed using a personal computer, a data acquisition board and program, and a 2-electrode corrosion probe. Reliability of the developed system was confirmed with through comparison test. With this system, the effect of sodium nitrite ($NaNO_2$) as a corrosion inhibitor were studied on iron and aluminum brass that were immersed in sodium chloride (NaCl) solution. Corrosion rate was measured based on the linear polarization resistance method. The corrosion rates of aluminum brass and iron in 1% NaCl solutions were measured to be 0.290 mm per year (mmpy) and 0.2134 mmpy, respectively. With the addition of 200 ppm of $NO{_2}^-$, the corrosion rates decreased to 0.0470 mmpy and 0.0254 mmpy. The addition of $NO{_2}^-$ caused a decrease in corrosion rates of both aluminum brass and iron, yet the $NO{_2}^-$ acted as a more effective corrosion inhibitor for iron. than aluminum brass.