• Title/Summary/Keyword: Corrosion Protection System

Search Result 172, Processing Time 0.044 seconds

A study on the performance of the sacrificial anode used for cathodic protection of a marine bridge after 8 years (해상 교량에 설치된 희생양극식 전기방식의 8년 이후의 성능에 관한 연구)

  • Jeong, Jin-A;Ha, Ji-Myung;Lee, Du-Young;Lee, Sang-Deuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.510-515
    • /
    • 2016
  • Recently, corrosion occurred on the piles of a marine bridge located on the NamHae expressway in Korea. A sacrificial anode cathodic protection system was installed to prevent corrosion damage in the marine bridge. In the case of the marine bridge in this study, the sacrificial anode cathodic protection system was applied at the tidal and splash zones of the piles because the upper part of the structure was not corroded, and because corrosion occurs at the tidal and splash zones due to sea tides. To verify the performance of the sacrificial anode cathodic protection system 8 years later, cathodic protection (CP) current, CP potential, and degree of depolarization were measured. The experimental results on the performance of the sacrificial anode cathodic protection system from a total of 60 piles were classified into 4 categories: good CP effect results (13 piles), partial CP effect results (27 piles), temporarily erroneous results (5 piles), and need for maintenance because of delamination (15 piles). It was determined that additional repairs are required, such as the application of bulk anodes and jacket casings, for piles where the CP effect is poor.

Effect of corrosion environment on the SCC of Al-brass tube for vessel (선박용 Al-황동세관의 SCC에 미치는 부식환경의 영향)

  • 임우조;정해규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.291-297
    • /
    • 2003
  • Al-brass is usually used as the tube material of vessel's heat exchanger for seawater cooling system because it has high thermal conductivity and good mechanical properties and high corrosion resistance due to cuprous oxide (Cu20) layer against seawater. However, Al-brass tubes of heat exchanger for vessel at the actual environment is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment In this paper, the effect of corrosion environment on the stress corrosion cracking of Al-brass in various NH4OH of 3.5% NaCl solution, under flow by constant displacement tester. Based on the test results, the behavior of polarization, stress corrosion crack propagation and dezincification phenomenon of Al-brass are investigated. The main results are as follows:(1) Increasing range of potential from open circuit potential to repassivation gets lower, as the contain rate of NH4OH gets higher. (2) As contain rate of NH4OH gets higher, SCC of Al-brass is become activation but the protection film(Cu20) of Al-brass is created in 3.5% NaCl solution. (3) According as content of NH4OH increases in 3.5% NaCl solution, the dezincifiction area is spread. It is concluded that dezincification occurred by localized preferential anodic dissolution at stress focusing region.

Formation of Calcareous Deposit on Steel Plate by using Waste Oyster Shell (강판상에 굴 패각을 이용한 탄산칼슘 피막의 형성)

  • Kim, Beomsoo;Kwon, Jaesung;Kim, Yeonwon;Lee, Myeonghoon;Yang, Jeonghyeon
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.6
    • /
    • pp.531-535
    • /
    • 2017
  • Enormous amount of waste oyster-shell (OS) has a major disposal problem in coastal regions. OSs have attracted much attention for recycling, because these are mainly composed of calcium carbonate with rare impurities. In this study, we demonstrate the calcareous deposit films on steel plate by using OSs on the basic of cathodic protection technique. The composition of the OSs was analyzed by wavelength dispersive X-ray fluorescence spectrometer. Carbon dioxide gas was pumped into distilled water to make carbonic acid solution for dissolution of OS. The calcareous deposit was characterized by second electron microscope (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction. Corrosion rates were estimated by measurements of anodic polarization and immersion test. It is confirmed that calcareous deposits on steel plate are formed under all condition of cathodic protection by using waste OS from the SEM and EDX results. Calcareous deposits on steel by OS provide good corrosion resistance by acting as a barrier to oxygen supply to the steel surface.

Mathematical Modeling on the Corrosion Behavior of the Steel Casing and Pipe in Cathodic Protection System (음극방식 시스템에서의 압입관과 배관의 부식거동에 관한 수학적 모델링)

  • Kim Y.S.;Li S.Y.;Park K.W.;Jeon K.S.;Kho Y.T.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.40-46
    • /
    • 1998
  • Mathematical modeling on the corrosion of the steel casing and main pipe due to the protection current resulting from a cathodic protection system was carried out using boundary element method. The model is consisted of Laplace's equation with non-linear boundary conditions(Tafel equations) and the iterative technique to determine the miexed potential of the steel casing. The model is applied to the normal steel casing section as well as abnormal one with defects such as metal touch and insulation defects. From the modeling procedure, we can calculate the potential distributions and current density distributions of the system. The theoretical results of the qualitatiive corrosion aspect along the steel casing and main pipe agree well with the experimental results within the experimental conditions studied.

  • PDF

Optimum Location of Electrode of Cathodic Protection System by using Boundary Element Method (BEM을 이용한 Cathode 방식 시스템에서 전극 위치 최적화)

  • Lee, Kwang-Ho;Chung, Koon-Seok;Baik, Dong-Chul;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.772-774
    • /
    • 2000
  • The objective of a cathodic protection system (CP) is to protect the buried metallic structure against the corrosion caused by chemical reaction between the buried structure and the surrounding medium, such as soil. This paper presents a boundary element application to determine the optimal impressed current densities in a cathodic protection system. The potential within the electrolyte is described by the Laplace's equation with nonlinear boundary conditions which are enforced based on experimentally determined electrochemical polarization curves. The optimal impressed current densities are determined in order to minimize the power supply for protection. The solution is obtained by using the conjugate gradient method in which the governing equations and the protecting conditions are taken into account by the penalty function method. Numerical example are presented to demonstrate the practical applicability of the proposed method.

  • PDF

The Comparison Analysis of Field Test Cases on Technical Specifications of Electrolytic Corrosion in Urban Railway (국내 도시철도 전식방지 기술기준에 따른 시험사례 비교분석)

  • Kim, Jae-Moon;Jung, Ho-Sung;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.305-310
    • /
    • 2010
  • DC electricity feeder system operating in the urban railway is typically a feedback circuit consisted of the contact wire and electric railway vehicle via rail. But stray current is flowed on a structure that is not part of the intended electrical circuit with respect to a given structure. This paper presents comparison analysis of field test cases based on criteria of electrolytic corrosion protection of buried metallic structures adjacent to DC traction systems. As a result of it, we confirmed that measurement methods are different from each other about the same tests. Therefore measurement methods to prevent electrolytic corrosion need to establish electrical facilities standards to be applied domestic.

Variation of Corrosion Properties on the Steel Surface by Environmental Changes in Shihwa Lake (시화호 환경 변화에 따른 강재 표면의 부식특성 변화)

  • Park, Jun-Mu;Lee, Seung-Hyo;Woo, Sang-Kyun;Chu, In-Yeop;Lee, Myeong-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.5
    • /
    • pp.316-324
    • /
    • 2018
  • Harsh seawater environment is subdivided into marine atmosphere, splash zone, tidal zone, submerged zone and bottom of sea depending on the exposed part. Since corrosion rate depends on the conditions of the exposed parts, proper protection and maintenance for each parts are essential for long-term use of steel structures in seawater environment. For steel structures which were installed in Shiwha Lake, a special maintenance system is required to guarantee its long-term durability and safety. As the tidal power plant has recently been operated, the salinity has risen due to the rapid influx of seawater upstream into Sihwa Lake and the corrosion tendency of the structure is variable according to the water level fluctuation. In this study, corrosion properties of steel structures under water level fluctuation was evaluated by corrosion rate measurement, visual inspection and natural potential measurement and their durability and life management were discussed in view of the effect of variation in of seawater level fluctuations in Shihwa Lake.

Corrosion Protection of Steel by Applying a Zn-Sn Metal Spray System (Zn-Sn 합금을 이용한 강구조물의 금속용사공법 방식성능평가 연구)

  • Ryu, Hwa-Sung;Jeong, Dong-Geun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.505-513
    • /
    • 2014
  • The purpose of this study is to evaluate the corrosion protective properties of a Zn-Sn metal spray method according to the contents of Zn and Sn by a CASS test and the electrochemical theory. In the experiment, the CASS test and the electrochemical test were conducted to investigate the corrosion protective property of the Zn-Sn Metal Spray system, the Zinc galvanizing system, and the heavy duty coating system. As a result, it was confirmed that the Zn-Sn (65:35) Metal Spray system had very high corrosion protective property through the electrochemical characteristic as comparison with the other anti-corrosion systems and was very effective to prevent steel products from corrosion.

The Specific Resistance Analysis and Measurement of the Ground at the site of the Anode Laying for the Electrolytic Protection for the Electrical Anticorrosive (전기방식용 양극 매설부지 대지 비저항 측정 및 분석)

  • Hong, Sung-Taek;Shin, Gang-Wook;Lee, Dong-Keun;Lee, Eun-Chun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.115-117
    • /
    • 2005
  • The electrolytic protection is classified according to the current supplied. And there are the Sacrificial Anode System, the Impressed Current System, the Polarized Drainage System, the Forced Drainage System. This study is intended to design and analyze the electrolytic protection at water transmission pipes which is occurred the corrosion, and to show the methods protecting corrosions at water transmission pipes.

  • PDF

Design of an Active Shaft Grounding System for the Elimination of Alternating Electromagnetic Field in Vessel (선체 교류 전자장 제거를 위한 능동 축 접지 시스템 설계)

  • Kim, Tae-kue;Ahn, Ho-kyun;Yoon, Tae-sung;Park, Seung-kyu;Kwak, Gun-pyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1515-1524
    • /
    • 2015
  • Recently, for the purpose of preventing the corrosion of a vessel, the electrical corrosion protection device that prevents the corrosions of the hull and the propeller is widely used. However, the electrical corrosion protection method artificially emits the current into the seawater around the hull using the power supply in order to make the hull and propeller be in the state of not being corrosion, so that electromagnetic field is generated outside the hull by the current emitted into the seawater. In this paper, the static and alternating constituents of the electromagnetic field generated in underwater outside the hull are analyzed and a countermeasure is investigated to reduce the strength of the electromagnetic field. In conventional shaft grounding system, the shaft potential is maintained above at least 100mV and the alternating current component constitutes more than 10% of the total current. However, in this paper, a control system was designed in order that the alternating current component and the shaft potential which generate electromagnetic field are maintained within 1% and 2mV respectively, and the performance was verified by simulation.