• Title/Summary/Keyword: Corrosion Product

Search Result 216, Processing Time 0.027 seconds

Development of High Functional Black Resin Coated Electrogalvanized Steel Sheet for Digital TV Panel

  • Jo, Du-Hwan;Kwon, Moonjae;Lee, Jae-Hwa;Kang, Hee-Seung;Jung, Yong-Gyun;Song, Yon-Kyun;Jung, Min-Hwan;Cho, Soo-Hyoun;Cho, Yeong-Bong;Cho, Myoung-Rae;Cho, Byoung-Chon;Lim, Kwangsoo;Seon, Pan-Woo;Han, Hyeon-Soop;Jeong, Hwon-Woo;Lee, Jae-Ryung;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Recently Digital TV industry has drastically been moving the illuminating system, which causes an obvious product change from PDP and LCD to LED model to provide high-definition image. Due to strong competition in the digital industry, TV manufacturers make a great efforts to reduce production cost by using low-priced materials such as steels instead of aluminum and plastic etc. In this paper we have developed a new low-priced electrogalvanized steel sheet, which has a black resin composite layer, to substitute conventional high-priced PCM steel and plastic mold for rear cover panel in the digital TV. The black resin composite was prepared by mechanical dispersion of the mixture solution that consists of high solid polyester resin, melamine hardener, black pigment, micronized silica paste, polyacrylate texturing particle and miscellaneous additives. The composite solution was coated on the steel sheet using roll coater followed by induction furnace curing and cooling. Although the coated layer has a half thickness compared to the conventional PCM steels having $23{\mu}m$ thickness, it exhibits excellent quality for the usage of rear cover panel. The new steel sheet was applied to test products to get quality certification from worldwide electronic appliance customers. Detailed discussion provides in this paper including preparation of composite solution, roll coating technology, induction curing technology and quality evaluation from customers.

A Study on mold manufacture of multi-cavity dental iodine container using powder injection molding (분말사출성형을 이용한 다수 캐비티 치과용 요오드 용기 금형제작에 관한 연구)

  • Choi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • When iodine container for dental mouth treatment is opened, thread for treatment is cut by the blade in cap of container. Due to the problem of corrosion in a short period time after the reaction of metal blade to iodine solution, it gives impact on patient hygiene. In order to solve the problem, alternative products such as ceramic blade are developed and produced recently. In case of ceramic blade, it is produced by handwork and machine work. In this study, for the quantity production of ceramic blade with powder injection molding, we proposed a delivery system to have uniform charge of 20 cavity. Using Moldflow, simulation on 20 Cavity flow was performed. And then the mold was obtained through mold production and modification.(based on simulation) After injection molding, debinder, sintering process was achieved for ceramic blade, and the cap product was completed via insert injection on ceramic blade. In this study, we verified possibility of quantity production of ceramic blade which showed effective performance for cutting.

Determination of Deterioration and Damage of Porcelain Insulators in Power Transmission Line Through Mechanical Analysis (기계적 분석을 통한 송전용 자기 애자의 열화 판단 및 파손 부위에 대한 연구)

  • Son, Ju-Am;Choi, In-Hyuk;Koo, Ja-Bin;Kim, Taeyong;Jeon, Seongho;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.50-55
    • /
    • 2020
  • Porcelain insulators have been used for a long time in 154 kV power transmission lines. They are likely to be exposed to sudden failure because of product deterioration. This study was conducted to evaluate the quality of porcelain insulators. After stresses were applied, the damaged regions of aged insulators were investigated in terms of chemical composition, material structure, and other properties. For porcelain insulators that were in service for a long time, the mechanical failure load was 126 kN, whereas the average mechanical failure load was 167.3 kN for new products. It was also determined that corrosion occurred at the metal pin part due to the penetration of moisture into the gap between the pin and the ceramic. Statistical analyses of failure were performed to identify the portion of the insulators that were broken. Cristobalite porcelain insulators fabricated without alumina additives had a high failure rate of 54% for the porcelain component. In the case of the addition of Alumina (Al2O3) to the porcelain insulators to improve the strength of the ceramic component, a more frequent damage rate of the cap and pin of 73.3% and 27%, respectively, was observed. This study reports on the material component of SiO2 and the percentage of alumina added, with respect to the mechanical properties of porcelain insulators.

The Study on Effect of Emissions and Performance of a Conventional Vehicle using the High Concentration Alcohol Blended Petroleum Product (고농도 알코올 혼합 석유제품이 자동차 성능 및 배출가스에 미치는 영향 연구)

  • KIM, SUNG-WOO;DOE, JIN-WOO;KIM, KI-HO;HA, JONG-HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • As concern about energy security and global warming many countries have been making effort to reduce fossil fuel. In the case of US, as one of the efforts, the standards of the alcohol vehicle fuels(including blended with gasoline) have been established. Alcohol is known that make some trouble concerning startability, durability and corrosion when using as fuel of a conventional vehicle. For these reason, alcohol usage needs not only the fuel standard, but also a modified car. In the case of Korea, although there are no the standard and the modified vehicle yet, high concentration alcohol blended fuel has being sold at illegal market. In this study, exhaust gas and performance of the conventional vehicle that alcohol(methanol and isopropyl alcohol) blends were fueled were measured to notify danger of using them without preparation of institutional arrangements. Also, to analyze correlation characteristics of the fuels and them, property test of the fuels was conducted. The test result show that bad-startability caused by low RVP and high T10 affected increase in NMOG and CO. NOx was increased under the highest short term fuel trim caused by high Oxygen content and low NHV of alcohol. According to increasing as alcohol content, fuel economy and acceleration ability were decreased but $CO_2$ was not significantly decreased.

Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging (열간 형단조 Nimonic 80A의 미세조직 변화 예측)

  • Jeong H. S.;Cho J. R.;Park H. C.;Lee S. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

Thermodynamic Modelling of Blast Furnace Slag Blended Cement Composites (고로슬래그가 치환된 시멘트복합체의 열역학적 모델링)

  • Yang, Young-Tak;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.488-495
    • /
    • 2017
  • In this study, we conducted the kinetic hydration modeling of OPC and the final product according to the substitution ratio of GGBS by using the geochemical code, GEMS, in order to calculate the thermodynamic equilibrium. The thermodynamic data was used by GEMS's 3rd party database, Cemdata18, and the cement hydration model, the Parrot & Killoh model was applied to simulate the hydration process. In OPC modeling, ion concentration of pore solution and hydration products by mass and volume were observed according to time. In the GGBS modeling, as the substitution rate increases, the amount of C-S-H, which contributes the long-term strength, increases, but the amount of Portlandite decreases, which leads to carbonation and steel corrosion. Therefore, it is necessary to establish prevention of some deterioration.

Titanium alloy bolt hot forging process analysis through plastic working analysis (소성 가공 해석을 통한 티타늄 합금 볼트 열간 단조 공정 분석)

  • Choi, Doo-Sun;Kim, Tae-Min;Han, Bong-Seok;Han, Yu-Jin;Ko, Kang-Ho;Park, Jung-Rae;Park, Kyu-Bag;Lee, Jung-Woo;Kim, Do-Un
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • Titanium alloy has been in the spotlight as a core material in high-tech industries that require high strength and light weight because it has excellent strength and corrosion resistance and strength is higher than that of steel. Therefore, in various industries, existing steel products are intended to be replaced with titanium alloys. Titanium alloys can cause cutting tool breakage during cutting, and heat generated during cutting does not dissipate, accumulates in tools and workpieces, resulting in large wear and tear on thin workpieces. In addition, since titanium alloy is a metal with high chemical activity, the wear of the tool becomes more severe when the cutting speed is high, so machining of titanium bolt through cutting is very disadvantageous in terms of productivity. Therefore, the production of bolts using titanium alloys is being produced through a forging process to improve productivity and product quality. In this paper, hot forging molding analysis was performed on bolts used for fastening automobile parts using Ti-6Al-4V alloy, which is the most commonly used titanium alloy.

Study on Plugging Criteria for Thru-wall Axial Crack in Roll Transition Zone of Steam Generator Tube (증기발생기 전열관 확관천이부위 축방향 관통균열의 관막음 기준에 관한 연구)

  • Park, Myeong-Gyu;Kim, Yeong-Jong;Jeon, Jang-Hwan;Kim, Jong-Min;Park, Jun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2894-2900
    • /
    • 1996
  • The stream generator tubes represent an integral part of a major barrier against the fission product release to the environment. So, the rupture of these tubes could permit flow of reactor coolant into the secondary system and injure the safety of reactor coolant system. Therefore, if the crack was detected during In-Service Inspection of tubes the cracked tube should be evaluated by the pulgging criteria and plugged or not. In this study, the fracture mechanics evaluation is carried out on the thru-wall axial crack due to Primary Water Stress Corrosion Cracking in the roll transition aone of steam generator tube to help the assurence the integrity of tubes and estabilish the plugging criteria. Due to the Inconel which is used as tube material is more ductile than others, the plastic instability repture theory was used to calculate the critical and allowable crack length. Based on Leak Before Break concept the leak rate for the critical crack length and the allowable leak rate are compared and the safety of tubes was given.

A study on press plasticity of A3003-O aluminum material (A3003-O 알루미늄 소재의 프레스 성형성에 대한 연구)

  • Kim, Hyeok-Jin;Han, Seong-Ryeol;Kim, Kyung-A
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.23-27
    • /
    • 2019
  • People's interest in the environmental problems of the Earth is growing as they come to the modern world, and research is being actively conducted on how to protect the environment. As a result, the automobile industry, one of the causes of environmental pollution, is also affected. Therefore, research is being conducted to improve the fuel economy and light weight of cars, development of pollution-free cars such as electric cars, and aluminium materials that are lighter than ordinary steel sheets and easier to recycle are gaining attention. In this experiment, the material was formed to form a form of aluminium and the material reduction rate of the side wall of the foam was tested according to the amount of side wall. The material used in the experiment was A3003-O, which is less plastic than normal steel plates, but has excellent corrosion resistance, plasticity and weldability compared to aluminium materials, but has poor tensile strength. For tensile testing, a certain array of Forming Shapes was molded and the height of the Forming was set to 5mm, and the height of the Forming was 4.7mm, indicating that the difference between the first 5mm Forming and the height was not large. In addition, the material reduction rate was tested by giving 15, 0, and -0.15 teas, respectively, and was found to be valuable as a product only for -0.15.

Study on the Optimum Design of High Pressure Common-rail DME Injector Nozzle with Consideration of Cavitation (공동현상을 고려한 커먼레일용 고압 DME 인젝터 노즐의 최적 설계 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • DME (Di-Methyl Ether) is synthetic product that is produced through dehydration of methanol or a direct synthesis from syngas. And it is able to save fossil fuel and reduce pollutants of emission such as PM and $CO_2$. In spite of its advantages it is difficult to design DME fuelled engine system because DME fuel may cause to severely generate cavitation and corrosion in fuel delivery system due to physical properties of DME. Therefore, in this study three-dimensional internal flow characteristics with consideration of cavitation were predicted in the DME injector using diesel and DME fuel. Moving grid technique was employed to describe needle motion and 1-D hydraulic simulation of injector was also simulated to obtain transient needle motion profiles. The results of simulation show that cavitations was generated at the inlet of nozzle near high velocity region both diesel and DME. And mass flow rate of DME is reduced by 4.73% compared to that of diesel at maximum valve lift because cavitation region of DME is much more larger. To increase flow rate of DME injector, internal flow simulation has been conducted to investigate the nozzle hole inner R-cut effect. The flow rates of diesel and DME increase as R-cut increases, and flow coefficient of DME fuel injector was increased by 6.3% on average compared with diesel fuelled injector. Finally, optimum shape of DME injector nozzle is suggested through the comparison of flow coefficient with variation of nozzle hole inner R-cut.