• Title/Summary/Keyword: Corrosion Product

Search Result 216, Processing Time 0.028 seconds

Corrosion Failure Analysis of Air Vents Installed at Heat Transport Pipe in District Heating System (지역난방수 공급관 에어벤트 부식 파손 분석)

  • Lee, Hyongjoon;Chae, Hobyung;Cho, Jeongmin;Kim, Woo Cheol;Jeong, Joon Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.189-195
    • /
    • 2020
  • Two air vents situated on a heat transport pipe in district heating system were exposed to the same environment for 10 years. However, one air vent was more corroded than the other. It also had a hole on the top of the front-end pipe. Comparative analysis was performed for these air vents to identify the cause of corrosion and establish countermeasures. Through experimental observation of the damaged part and analyses of powders sampled from air vents, it was found that corrosion was initiated at the top of the front-end pipe. It then spread to the bottom. Energy dispersive X-ray spectroscopy results showed that potassium and chlorine were measured from the corroded product in the damaged air vent derived from rainwater and insulation, respectively. The temperature of the damaged air vent was maintained at 75 ~ 120 ℃ by heating water. Rainwater-soaked insulation around the front-end pipe had been hydrolyzed. Therefore, the damaged air vent was exposed to an environment in which corrosion under insulation could be facilitated. In addition, ion chromatography and inductively coupled plasma measurements indicated that the matrix of the damaged front-end pipe contained a higher manganese content which might have promoted corrosion under insulation.

Failure Analysis of Welded type 304 in Cooling Water Pipeline of District Heating System (지역난방 냉각수 배관의 용접부 파손 분석)

  • Jeong, Joon-Cheol;Kim, Woo-Cheol;Kim, Kyung Min;Sohn, Hong-Kyun;Kim, Jung-Gu;Lee, Soo-Yeol;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.296-301
    • /
    • 2020
  • Failure analysis on the welded type 304 pipe used for cooling water piping in the district heating primary side was conducted. Inorganic elements and bacteria in the cooling water and in corrosion products were analyzed, and the weldment was inspected by microscopy and a sensitization test. Corrosion damages were observed in the heat-affected zone, on weld defects such as incomplete fusion or excessive penetration caused by improper welding, or/and at the 6 o'clock position along the pipe axial direction. However, the level of concentration of chloride in the cooling water as low as 80 ppm has been reported to be not enough for even a sensitized type 304 steel, meaning that the additional corrosive factor was required for these corrosion damages. The factor leading to these corrosion damages was drawn to be the metabolisms of the types of bacteria, which is proved by the detection of proton, sulfur containing species, biofilms, and both bacteria and corrosion product analyses.

A Study on the Removal Method of Radioactive Corrosion Product using its Magnetic Property (방사성 부식생성물의 자기적 성질을 이용한 제거방법에 대한 연구)

  • 송민철;공태영;이건재
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.73-79
    • /
    • 2003
  • In a pressurized water reactor, radioactive corrosion products (CRUD) in primary coolant system are one of the major sources for the occupational radiation exposure of the personnel in a nuclear power plant. Through the recent trend of long term fuel cycle in a nuclear power Plant, radioactive corrosion products deposited in reactor core for a long time are also the cause of Axial Offset Anomaly (AOA) having m effect on reactor power by the hideout of boron. CRUD consist primarily of magnetite, nickel ferrite, cobalt ferrite, and so on. They have the characteristic of strong magnetism. Therefore it is performed the conceptual design to develop the filter which removes the CRUD by magnetic field that is generated by an arrangement of permanent and electric magnets. Contrary to the conventional filter, the proposed filter does not interrupt the fluid flow, so there is little pressure drop and it can be used continuously. It is expected to be applied as one of the technologies for removal of the CRUB.

  • PDF

Evaluation of Corrosivity of Antifreeze for Automobiles Containing Non-amine Type Corrosion Inhibitors for Copper (Non-amine계 부식방지제를 포함하는 자동차용 부동액의 구리 부식성 평가)

  • Soh, Soon-Young;Chun, Yong-Jin;Park, In-Ha;Han, Sang-Mi;Jang, Hee-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.619-626
    • /
    • 2020
  • The development of new antifreeze mixtures containing non-amine-type corrosion inhibitors, which considers environmental protection, has become a major issue. In this study, four non-amine-type corrosion inhibitors were synthesized and used to produce five kinds of new antifreeze for automobiles to evaluate the rate of copper corrosion. The effects were evaluated by the weight change, surface observation, roughness measurement, and measurement of copper elution in the solution. The amount of copper eluted measured by ICP from Sample 4 was small, and the elution rate was prolonged. Sample 4 showed the best anti-corrosion performance owing to a corrosion suppression effect by passivating copper because the metal surface was smooth after the test, and the corrosion product layer was formed evenly on the surface as small local corrosion was observed. The major corrosion inhibitor added to Sample 4 was 1-aminomethyl(N',N'-di(2-hydroxyethyl)benzotrazole, which contained a certain amount in Sample 5 to show relatively high local corrosion but passivation in progress. Therefore, among the four corrosion inhibitors, 1-aminomethyl(N',N'-di(2-hydroxyethyl)benzotrazole had the highest corrosion inhibitory effect. This corrosion inhibitor prevents corrosion by promoting the passivation of copper on the antifreeze.

Microstructure modification and electrochemical properties of steel corrosion in the blended cement systems containing internal chlorides (고농도 염화물을 함유하는 혼합시멘트 계에서 철근부식에 따른 미세구조의 변화와 전기화학적 특성)

  • 나종윤;이승헌;김창은
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.131-134
    • /
    • 1999
  • Microstructure modification and electrochemical properties are investigate to estimate the effects of internal chlorides on the steel corrosion in the blended cement systems. According to the test results, slag cement system showed high chloride binding capacity and low corrosion rate. The impedance data showed three distince arcs from lowest(mHz) frequency to highest (MHz) frequency due to product layer, interfacial reaction and bulk matrix. Through the microstructural investigation, fine steel-matrix interface of slag cement system was observed but rough steel-matrix interface of OPC system was observed. Friedel's salt was thought that the substantial material contributed to the chloride binding of slag cement system.

  • PDF

Study of Drinking water pipeline Corrosion Mechanism by using Scale Analysis (부식 생성물 분석법을 이용한 상수도 금속관의 부식거동에 관한 연구)

  • 황상용;송호봉
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • Carbon cast iron and Zinc coated steel were the most widely used portable water of supply and distribution Pipeline system. The leaching of red water in portable water could produce sericus environmental sanitary problems. Due to the red water was the most alternative to inner scale of metal pipeline. So this study was conducted the impact of red water on scale products, and was evaluated by the corrosive metal contaminants of 20 fears over. Surface tests, metal surface composition measurements of samples XRF, XRD, and SEM(EDS), analysis were used to investigate the corrosion characteristies of carbon cast iron and Zinc coated steel. As the contaminants of Fe increased the red water of carbon castiron pipe increased due to the scale products amount of $Fe_2O_3$ (Hemite).

A Study on the Fatigue Crack Growth Behavior in Ti-6Al-4V Alloy(I) (Ti-6Al-4V의 피로균열성장거동에 관한 연구(I))

  • 우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.52-57
    • /
    • 2001
  • Fatigue crack growth behaviour of Ti-6A-4V alloy is investigated in air and salt solution environment at room temperature and $200^{\circ}C$. Fatigue crack growth rate is blown to be fast for the formation of corrosive product in hot salt environment. For the effect on corrosion fatigue crack growth behaviour of region II. fatigue crack growth rate in atmosphere had a little gap to both case, $200^{\circ}C$ and room temperature. However, it showed very fast tendency in salt corrosive atmosphere, and it was remarkably accelerated in $200^{\circ}C$ temperature salt environment. When $\Delta$K was approximately 30MPa(equation omitted), fatigue crack growth rate had a little difference between at room temperature and at $200^{\circ}C$ high temperature, however in case of salt corrosive environment the room temperature was 3.5 times Inter and $200^{\circ}C$ high temperature for 16 times than air environment respectively.

  • PDF

Anaerobic Corrosion Properties of Sangpyeongtongbo Excavated at Bigyeongdo, Seosan (서산 비경도 출수 상평통보의 혐기성 부식 특성)

  • Kim, Kyu Been;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.33 no.3
    • /
    • pp.167-179
    • /
    • 2017
  • In this study, Sangpyeontongbo excavated at Bigyeongdo, Seosan, were investigated to determine the components of the corrosion products that were formed while they were buried underwater in an anaerobic environment. The causes of corrosion product formation were also determined. Microstructure observation, element mapping, principle component analysis for each year, and the detection of corrosion products were carried out. Results indicate that the concretions of corrosion products on the surface are needle-, hexahedral-, and octahedral-shaped; Pb, Cu, and S were among the elements detected. The Cu-S layer was clearly verified using element mapping. An analysis of major elements for each layer showed that Cu, S, and Pb were present and that most Zn was eliminated. The corrosion products detected were $PbCO_3$ (concretion) and $Cu_{1.96}S$ (metal). Accordingly, the anaerobic corrosion properties of Sangpyeongtongbo are summarized as follows: dezincification, copper sulfide, and lead compound.

Flow-Accelerated Corrosion Analysis for Heat Recovery Steam Generator in District Heating System (지역난방 배열 회수 보일러의 유동 가속 부식 원인 고찰)

  • Hong, Minki;Chae, Hobyung;Kim, Youngsu;Song, Min Ji;Cho, Jeongmin;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.11-15
    • /
    • 2019
  • Severe wall thinning is found on the tube of a low-pressure evaporator(LPEVA) module that is used for a heat recovery steam generator(HRSG) of a district heating system. Since wall thinning can lead to sudden failure or accidents that lead to shutdown of the operation, it is very important to investigate the main mechanism of the wall thinning. In this study, corrosion analysis associated with a typical flow-accelerated corrosion(FAC) is performed using the corroded tube connected to an upper header of the LPEVA. To investigate factors triggering the FAC, the morphology, composition, and phase of the corroded product of the tube are examined using optical microscopy, scanning electron microscopy combined with energy dispersive spectroscopy, and x-ray diffraction. The results show that the thinnest part of the tube is in the region where gas directly contacts, revealing the typical orange peel type of morphology frequently found in the FAC. The discovery of oxide scales containing phosphate indicates that phosphate corrosion is the main mechanism that weakens the stability of the protective magnetite film and the FAC accelerates the corrosion by generating the orange peel type of morphology.