• 제목/요약/키워드: Corrosion Management

Search Result 226, Processing Time 0.02 seconds

Development of Lifetime Evaluation and Management Technologies for Nuclear Power Plants (원자력발전소 수명평가 및 수명관리 기술개발)

  • Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.991-1004
    • /
    • 2009
  • Operating experience of the various components in the nuclear power plants has shown that a variety of degradation mechanisms can occur during operation. Therefore, the accurate lifetime evaluation and systematic management are very important for the safe as well as the economical operation of the nuclear power plants. In this paper, the characteristics of a total of 17 degradation mechanisms were reviewed and the plausible degradation mechanisms such as stress corrosion cracking, fatigue, irradiation embrittlement, and so on, were identified. Also, the lifetime evaluation technologies which have been developed for the application to the domestic nuclear power plants are described. In addition, a total of 48 aging management programs which have been established for the safe operation of the various components are explained.

An Assesment of the Gas Pipeline Reliability Using Corrosion based Composite Failure (부식기반 복합고장을 고려한 가스배관의 신뢰도 평가)

  • Kim, Seong-Jun;Kim, Dohyun;Kim, Woosik;Kim, Young-Pyo;Kim, Cheolman
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.739-754
    • /
    • 2019
  • Purpose: The purpose of this paper is to develop a reliability estimation procedure for the underground gas pipeline in the presence of corrosion defects. Methods: Corrosion is one of the major causes of the gas pipeline failure. Several failure forms caused by corrosion have been studied. Among them, small leak and burst are considered in this paper. The composite failure of the two is defined by limit state function, and it is expressed with pipe parameters. Given a modified corrosion dataset, in order to obtain reliability estimations, the method of first order and second moment is adopted because of its simplicity. The computation processes are conducted with MATLAB coding. Results: According to numerical results, the probability of composite failure is affected by both small leak and burst. In particular, when corrosion depth stays at low level, it is consistent with the probability of burst failure. On the contrary, it is more influenced by the small leak failure as corrosion depth is increasing. In such case, the probability of composite failure is fast approaching to the safety limit. Conclusion: By considering the composite failure, more practical predictions of remaining life can be obtained. The proposed method is useful for maintenance planning of the underground gas pipeline.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.

Comparison Between FAC Analysis Result Using ToSPACE Program and Experimental Result (ToSPACE 프로그램을 이용한 FAC 해석결과와 실험결과 비교)

  • Hwang, Kyeongmo;Yun, Hun;Seo, Hyukki;Jung, Euije;Kim, Kyungmo;Kim, Dongjin
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.131-137
    • /
    • 2020
  • A number of piping components in the secondary system of nuclear power plants (NPPs) are exposed to aging mechanisms, such as flow-accelerated corrosion (FAC), cavitation, flashing, solid particle erosion, and liquid droplet impingement erosion. Those mechanisms may lead to thinning, leaking, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 in the USA in 1986 and Mihama unit 3 in Japan in 1994, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage pipe wall thinning, a foreign program has been utilized for NPPs in Korea since 1996. As our experience and knowledge of pipe wall thinning management have accumulated, our program needs to reflect our experience, requests from users, and the result of recent experiments using Flow Accelerated Corrosion Testing System (FACTS). FACTS is the empirical experimental facility developed by Korea Atomic Energy Research Institute (KAERI) for tests. Accordingly, KEPCO-E&C developed a 3D-based pipe wall thinning management program called ToSPACE in 2016. This paper describes a comparison between the FAC analysis results using ToSPACE and the experimental results using FACTS to verify their applicability to pipe wall thinning management in NPPs.

Development and demonstration of an erosion-corrosion damage simulation apparatus (배관 침부식 손상 연속모사 장비 개발 및 실증)

  • Nam, Won Chang;Ryu, Kyung Ha;Kim, Jae Hyoung
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.

The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity (항공기 주기환경이 대기부식위험도에 미치는 영향)

  • Yun, Juhee;Lee, Dooyoul;Park, Sungryul;Kim, Min-Saeng;Choi, Dongsu
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.94-104
    • /
    • 2021
  • Atmospheric corrosion severity associated with aircraft parking environment was studied using metallic specimens, and temperature and humidity sensors installed at each aircraft operating base. Data were analyzed after a year of exposure. Silver was used to measure chloride deposition by integrating X-ray photoelectron spectroscopy depth profiles. Carbon steel was utilized to determine the corrosion rate by measuring the weight loss. The time of wetness was determined using temperature and humidity sensor data. Analysis of variance followed by Tukey's "honestly significant difference" test indicated that atmospheric environment inside the shelter varied significantly from that of unsheltered parking environment. The corrosion rate of unsheltered area also varies with the roof. Hierarchical clustering analysis of the measured data was used to classify air bases into groups with similar atmospheric corrosion. Bases where aircraft park at a shelter can be grouped together regardless of geographical location. Unsheltered bases located inland can also be grouped together with sheltered bases as long as the aircraft are parked under the roof. Environmental severity index was estimated using collected data and validated using the measured corrosion rate.

An Experimental Study on the Improvement of City Gas Buried Double Piping Integrity (도시가스 매설이중배관 건전성 향상에 관한 실험적 연구)

  • Lim, Hyung-Duk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.757-763
    • /
    • 2020
  • City gas buried pipes are managed by corrosion protection to prevent corrosion. In the case of the press-in section, the double pipe and the main pipe may cause corrosion under the influence of stray current, which can shorten the life of the pipes. In addition, if the insulator is filled in the press-in section, the press-in section itself is a single structure, and can be directly affected by external impact, and when the surrounding ground subsidence occurs, the stress may be concentrated, resulting in serious consequences. In this study, a serration-type shock absorber in the form of a sliding support was proposed as a new buried double piping construction method using EPS. The serration-type shock absorber can contribute to the improvement of the integrity of the buried double piping, as it can utilize the gas piping's own ductility and stress distribution characteristics with proper anti-corrosion management and shock-absorbing material properties by preventing contact inside the buried double pipe. However, for application to ground piping, there remains a task to supplement the vulnerability against fire due to the characteristics of EPS materials.

A Study on the Estimating Burst Pressure Distributions for Reliability Assessment of API 5L X65 Pipes (API 5L X65 배관의 신뢰도 평가를 위한 파열압력 분포 추정에 관한 연구)

  • Kim, Seong-Jun;Kim, Dohyun;Kim, Cheolman;Kim, Woosik
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.4
    • /
    • pp.597-608
    • /
    • 2020
  • Purpose: The purpose of this paper is to present a probability distribution of the burst pressure of API 5L X65 pipes for the reliability assessment of corroded gas pipelines. Methods: Corrosion is a major cause of weakening the residual strength of the pipe. The mean residual strength on the corrosion defect can be obtained using the burst pressure code. However, in order to obtain the pipe reliability, a probability distribution of the burst pressure should be provided. This study is concerned with estimating the burst pressure distribution using Monte Carlo simulation. A response surface method is employed to represent the distribution parameter as a model of the corrosion defect size. Results: The experimental results suggest that the normal or Weibull distribution should be suitable as the probability distribution of the burst pressure. In particular, it was shown that the probability distribution parameters can be well predicted by using the depth and length of the corrosion defect. Conclusion: Given a corrosion defect on the pipe, its corresponding burst pressure distribution can be provided at instant. Subsequently, a reliability assessment of the pipe is conducted as well.

Corrosion Monitoring for Offshore Wind Farm's Substructures by using Electrochemical Noise Sensors

  • Soh, Joon-Young;Lee, Min-Woo;Kim, Su-Kyung;Kim, Do Hyung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.615-618
    • /
    • 2016
  • Electrochemical noise(EN) has been used to analyze the deterioration of coating films of offshore wind substructures. In this study, prototype sensors using EN have been developed to detect the corrosion rate. To verify the reliability of sensors, experiments were conducted both in the laboratory and offshore using probe and standard samples. New analysis and data processing techniques show that the sensor can provide useful information about the corrosion rate.

Hybrid-Biocomposite Material for Corrosion Prevention in Pipeline: a review

  • Suriani, M.J.;Nik, W.B. Wan
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-89
    • /
    • 2017
  • One of the most challenging issues in the oil and gas industry is corrosion assessment and management in subsea structures or equipment. At present, almost all steel pipelines are sensitive to corrosion in harsh working environments, particularly in salty water and sulphur ingress media. Nowadays, the most commonly practiced solution for a damaged steel pipe is to entirely remove the pipe, to remove only a localized damaged section and then replace it with a new one, or to cover it with a steel patch through welding, respectively. Numerous literatures have shown that fiber-reinforced polymer-based composites can be effectively used for steel pipe repairs. Considerable research has also been carried out on the repair of corroded and gouged pipes incorporated with hybrid natural fiber-reinforced composite wraps. Currently, further research in the field should focus on enhanced use of the lesser and highly explored hybrid-biocomposite material for the development in corrosion prevention. A hybrid-biocomposite material from renewable resource based derivatives is cost-effective, abundantly available, biodegradable, and an environmentally benign alternative for corrosion prevention. The aim of this article is to provide a comprehensive review and to bridge the gap by developing a new hybrid-biocomposite with superhydrophobic surfaces.