• Title/Summary/Keyword: Corroded Weld

Search Result 17, Processing Time 0.021 seconds

Analysis on the Scales formed on the Heat Affected Zone of Low Carbon Steel Weld in NaCl and H2S Water Solutions (저탄소강 용접열영향부의 NaCl, H2S 수용액에서 생성되는 부식스케일 분석)

  • Kim, Min-Jung;Bae, Dong-Ho;Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.4
    • /
    • pp.205-210
    • /
    • 2010
  • The A106 Gr B low carbon steel, which was used in the electric power plants and heavy chemical plants, was welded by multi-pass arc welding. The heat affected zone (HAZ) formed by welding was corroded in acid chloride solution, or in saturated $H_2S$ containing acid chloride solution, or in saturated $H_2S$ containing acid chloride solution under applied current. In this order of corrosion solution, the rate of corrosion increased, because $H_2S$ accelerated the iron dissolution, hydrogen evolution, and the formation of nonprotective FeS, whereas the applied current accelerated the electrochemical reaction. The scales formed in acid chloride solution consisted primarily of $Fe_3O_4$, while those formed in $H_2S$ containing acid chloride solution consisted primarily of $Fe_3O_4$ and FeS.

Corrosion Characteristics of Welding Zones by Laser and TIG Welding of 304 Stainless Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.294-299
    • /
    • 2010
  • Two types of welding methods were performed on austenitic 304 stainless steel: laser welding and TIG welding. The differences of the corrosion characteristics of the welded zones from the two welding methods were investigated with electrochemical methods, such as measurement of the corrosion potential, polarization curves, cyclic voltammogram, etc. The vickers hardness of all laser-welded zones (WM:Weld Metal, HAZ:Heat Affected Zone, BM:Base Metal) was relatively higher while their corrosion current densities exhibited a comparatively lower value than those which were TIG welded. In particular, the corrosion current density of the TIG-welded HAZ had the highest value among all other welding zones, which suggests that chromium depletion due to the formation of chromium carbide occurs in the HAZ, which is in the sensitization temperature range, thus it can easily be corroded with an active anode. Intergrenular corrosion was also observed at the TIG-welded HAZ and WM zones. Consequently, we can see that corrosion resistance of all austenitic 304 stainless steel welding zones can be improved via the use of laser welding.

A Study of Characteristics on the Dissimilar Metals (STS 316L - Carbon Steel: ASTM A516-70) Welds made with GTAW (스테인리스강 STS 316L과 탄소강 A516-70의 이종금속 GTA 용접부 특성에 대한 연구)

  • Kim, Se Cheol;Shin, Tae Woo;Moon, In Joon;Jang, Bok Su;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.37-43
    • /
    • 2015
  • Characteristics of dissimilar metal welds between STS 316L and carbon steel ASTM A516 Gr.70 made with GTAW have been evaluated in terms of microstructure, ferrite content, chemical analysis, hardness and corrosion resistance. Three heat inputs of 9.00, 11.25, 13.00kJ/cm were employed to make joints of dissimilar metals with ER309 wire. Based on microstructural examination, the amount of vermicular type of ${\delta}$-ferrite was increased with increasing heat input due to the increase of Creq/Nieq in the second layer of welds. Based on the EDX analysis of weld metals, Cr and Ni content in the 2nd layer increased while those content in the first layer of welds decreased with heat inputs. Cellular solidification mode in the 1st layer and dendritic solidification mode in the 2nd layer due to different cooling rates were prevailed, respectively. Heat affected zone which formed hard microstructure showed higher hardness than the weld metal. The salt spray test of dissimilar metals weld joints showed that the carbon steel surfaces only corroded. The weight loss rate due to corrosion increased up to 100hours but it decreased above 100 hours. There was little difference in the weight loss caused by corrosion regardless of heat inputs.

Evaluation of Characteristics of Welding Zones Welded with Inconel 718 Filler Metal to Piston Crown Forged Material (피스톤 크라운용 단강에 인코넬 718 용접재료로 용접된 용접부의 특성 평가)

  • Lee, Sung-Yul;Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.334-340
    • /
    • 2016
  • The combustion chamber of a diesel engine is often exposed to a more serious wear and corrosion environment than other parts of the engine because its temperature increases as a result of using heavy oil of low quality. Therefore, repair and built-up welding methods must be performed on worn or corroded parts of the piston crown, exhaust valve, etc. from an economical point of view. In this study, Inconel 718 filler metal was used in repair welding on the groove of a forged steel specimen for a piston crown, along with built-up welding on the surface of another forged steel specimen. Then, the corrosion characteristics of the weld metal zone for the repair welding and the deposited metal zone for the built-up welding were investigated using electrochemical methods in a 35% H2SO4 solution. The deposited metal zone indicated better corrosion resistance than the weld metal zone, showing a nobler corrosion potential, higher impedance, and smaller corrosion current density. It is considered that metal elements with good corrosion resistance were generally included in the filler metal, and these elements were also greatly involved in the deposited meta by built-up welding, whereas the weld metal consisted of metal elements mixed with both the filler metal and base metal elements because of the molten pool produced by the repair welding. Finally, it is considered that the hardness of the weld metal was increased by the repair welding, whereas the built-up welding improved the corrosion resistance of the deposited metal.

Electrochemical Evaluation on Corrosion Property of Welding Zone of 22APU Stainless Steel (22APU 스테인리스강의 용접부위의 부식특성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Sung-Yul;Kim, Jong-Do;Lee, Myung-Hoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1162-1169
    • /
    • 2009
  • Two kinds of welding methods were carried out for 22APU stainless steel, one is a Laser welding and the other is the TIG welding. In this case, difference of corrosion characteristics of welded zone with two welding methods mentioned above was investigated with electrochemical methods such as measurement of corrosion potential, polarization curves and cyclic voltammogram etc.. Vickers hardness of all welded zone (WM:Weld Metal, HAZ:Heat Affected Zone, BM:Base Metal)in the case of Laser welding showed a relatively higher value than those of TIG welding. Futhermore their corrosion current density in all welding zone were also observed with a lower value compared to TIG welding. In particular corrosion current density of BM regardless of welding method indicated the lowest value than those of other welding zone. Intergranular corrosion was not observed at the corroded surface of all welding zone in the case of Laser welding, however it was observed at WM and HAZ with TIG welding, which is suggested that chromiun depletion due to forming of chromium carbide appears to WM and HAZ which is in the range of sensitization temperature. Therefore their zone can easily be corroded with more active anode. Consequently we can see that corrosion resistance of all welding zone of 22APU stainless steel can apparently be improved by using of Laser welding.

Electrochemical Evaluation of Corrosion Property of Welding Zone of 304 Stainless Steel (304 스테인리스강의 용접부위의 부식특성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Kim, Jong-Do;Lee, Myung-Hoon;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.58-63
    • /
    • 2009
  • Two kinds of welding methods are used for austenitic 304 stainless steel: laser welding and TIG welding. The difference in the corrosion characteristics of the welded zone between these two welding methods was investigated using electrochemical methods, such as corrosion potential measurements, polarization curves, cyclic voltammograms, etc. The Vickers hardnesses of all the welded zones (WM: Weld Metal, HAZ: Heat Affected Zone, BM: Base Metal) showed relatively higher values in the case of laser welding than for TIG welding. Furthermore, the corrosion current densities of all the welding zones showed lower values compared to TIG welding. In particular, the corrosion current density of the HAZ with TIG welding had the highest value of all the welding zones, which suggests that chromium depletion due to the formation of chromium carbide appears in the HAZ, which is in the range of the sensitization temperature. Thus, it can easily be corroded with a more active anode. Consequently, we found that the corrosion resistance of all of the welding zones for austenitic 304 stainless steel could apparently be improved by using Laser welding.

Fatigue of SS490A and SS400 Corroded Specimens (SM490A와 SS400 대기부식 시편의 피로 특성 평가)

  • Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.725-731
    • /
    • 2009
  • For structural design and diagnosis, quantitative relationship between corrosive degradation and variation of mechanical properties such as tensile strength and fatigue strength is needed. But it is difficult to find experimental data associated with corrosive degradation of structural structures in the literature. In this study, first of all I established the atmospheric corrosion test procedure. And using specimens of SM490A and SS400 on the atmospheric corrosion test bed, I carried out tensile and fatigue tests at regular intervals. And we studied the effect of post-weld heat treatment on the tensile and fatigue behaviour. It is found fatigue strength decreases as the atmospheric corrosion period increases.