• Title/Summary/Keyword: Corroded Weld

Search Result 17, Processing Time 0.023 seconds

Effect of Weld Improvement on the Corroded Fatigue Life of Welded Structures (용접구조물의 부식피로수명에 미치는 용접부 개선처리 효과)

  • Im, Sung-Woo;Chang, In-Hwa;Kim, Sang-Shik;Song, Ha-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.50-57
    • /
    • 2008
  • The effect of weld improvement on the corroded fatigue life of welded structures was investigated. Toe grinding, TIG dressing and weld profiling were used as the geometric improvement methods. Fatigue tests under the corroded condition in artificial seawater were carried out to investigate the corrosion fatigue behavior of API 2W Gr.50T steel plate produced by POSCO. The test results in weld improved conditions were compared with those in as-welded condition. The test results were also compared with the design curves in UK DEn Class F. Corroded fatigue life of weld improved specimens was longer than that of as-welded specimen. Especially, the corroded fatigue life exceeded the mean SN curve in air of UK DEn Class F.

The Evaluation of Burst Pressure for Corroded Weld in Gas Pipeline (가스배관 용접부위 부식에 대한 파열압력 평가)

  • Kim, Young-Pyo;Kim, Woo-Sik;Lee, Young-Kwang;Oh, Kyu-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.222-227
    • /
    • 2004
  • The failure assessment for corroded pipeline has been considered with the full scale burst test and the finite element analysis. The burst tests were conducted on 762 mm diameter, 17.5 mm wall thickness and API 5L X65 pipe that contained specially manufactured rectangular corrosion defect. The failure pressure for corroded pipeline was measured by burst testing and classified with respect to corrosion sizes and corroded regions - the body, the girth weld and the seam weld of pipe. Finite element analysis was carried out to derive failure criteria of corrosion defect on the pipe. A series of finite element analyses were performed to obtain a limit load solution for corrosion defects on the basis of burst test. As a result, the criteria for failure assessment of corrosion defect within the body, the girth weld and the seam weld of API 5L X65 gas pipeline were proposed.

  • PDF

The Evaluation of Burst Pressure for Corroded Weld in Gas Pipeline (가스배관에서 원주 및 심 용접부의 부식손상 부위에 대한 파열압력 평가)

  • Kim Yeong Pyo;Kim U Sik;O Gyu Hwan
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.165-167
    • /
    • 2004
  • The failure pressure for corroded pipeline was measured by burst testing and classified with respect to corrosion sizes and corroded regions - the body, the girth weld and the seam weld of pipe. A series of finite element analyses were performed to obtain a limit load solution for corrosion defects on the basis of burst test. As a result, the criteria for failure assessment of corrosion defect within the body, the girth weld and the seam weld of API 5L X65 gas pipeline were proposed.

  • PDF

The effects of 3.5% NaCl solution on the corrosion fatigue crack propagation characteristics of SS41 steel (SS41강의 부식피로 균열 전파특성에 미치는 3.5% NaCl수용액의 영향)

  • 오세욱;김재철;최영수
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.111-119
    • /
    • 1987
  • The corrosion fatigue crack propagation characteristics of SS41 steel in 3.5% NaCl solution have been evaluated for loading frequencies of 1Hz and 0.2Hz. A sine wave loading profile was used for fatigue testing. Each test was carried out at a constant stress ratio, R(0.1). The main results are summarized as follows; 1. Fatigue crack propagation rate was higher in 3.5% NaCl solution than in air, higher in the base metal than in the weld metal, and higher at f =0.2Hz than at f =1Hz. 2. The crack closure level of the base metal was not influenced by cyclic frequencies, but that of the weld metal was much influenced. 3. When the crack closure effect was eliminated in the evaluation of crack propagation characteristics by using $\Delta K_{eff}$, the envirommental influence was distinctly observed. At the base metal, crack propagation rate was enhanced by the hydrogen embrittlement, and the weld metal was reduced by the crac closure. 4. There was clearly observed hydrogen embrittlement and severely corroded aspect at fracture surface of lower frequency than that of higher frequency, and at that of base metal than that of the weld metal.

  • PDF

A Study on Flow-Accelerated Corrosion of SA106 Gr.C Weldment (SA106 Gr.C강 용접재에서의 유체가속부식(FAC) 현상 연구)

  • Zheng Yugui
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.334-341
    • /
    • 2001
  • The chemical and geometric effects of weld on flow-accelerated corrosion (FAC) of SA106 Gr.C low alloy steel pipe in 3.5wt% NaCl and simulated feedwater of nuclear power plant have been investigated by using rotating cylinder electrode. Polarization test and weight loss test were conducted and compared at rotating speed of 2000rpm (3.14m/s) with the variables of chemical and geometric parameters. The results showed that the chemical effects were relatively larger than the geometric effects, and the welded parts were the local anode and preferentially corroded, which could be explained by the differences between microstructural and compositional parameters. On the other hand, under active corrosion conditions, the heat affected zone were severely corroded and microstructural effects became the important role in the whole process.

  • PDF

A Study on Characteristics of Dissimilar Welds between Super Duplex Stainless Steel UNS S32750 and Carbon Steel A516-70 with FCAW (슈퍼듀플렉스 스테인리스강 UNS S32750과 탄소강 A516-70의 이종금속 FCA 용접 특성에 대한 연구)

  • Moon, In-June;Jang, Bok-Su;Kim, Se-Cheol;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.26-33
    • /
    • 2014
  • The metallurgical and mechanical characteristics, toughness and corrosion resistance of dissimilar welds between super duplex stainless steel UNS S32750 and carbon steel ASTM A516Gr.70 have been evaluated. Three heat inputs of 21.12, 24.00, 26.88kJ/cm were employed to make joints of dissimilar metals with flux cored arc welding(FCAW). Based on microstructural examination, vermicular ferrite was formed in the first layer of weld at low heat input(21.12kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.61 while acicular ferrite was formed in last layer of weld at high heat input(26.88kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.72. Ferrite percentage in dissimilar welds was lowest in the first layer of weld regardless of heat inputs and it gradually increased in the second and third layers of weld. Heat affected zone showed higher hardness than the weld metal although reheated zone showed lower hardness than weld metal due to the formation of secondary austenite. Tensile strengths of dissimilar welds increased with heat input and there was 100MPa difference. The corrosion test by ferric chloride solution showed that carbon steel had poor corrosion resistance and pitting corrosion occurred in the first layer(root pass) of weld due to the presence of reheated zone where secondary austenite was formed. The salt spray test of carbon steel showed that the surface only corroded but the amount of weight loss was extremely low.

Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere (해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식)

  • Boo, Myung-Hwan;Lee, Jang-Wook;Lee, Jong-Hoon
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

Evaluation of Corrosion Characteristics on Welding Zone of Leakage SeawaterPipe Welded by Underwater Welding Electrode (수중 용접봉으로 용접한 누수배관 용접부위의 부식 특성 평가)

  • Moon, Kyung-Man;Lee, Sung-Yul;Kim, Yun-Hae;Lee, Myung-Hyoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1240-1247
    • /
    • 2008
  • Leakage trouble on the sea water pipeline in engine room is often resulted from a localized corrosion due to severe corrosive environment caused by both high speed and high pressure of sea water flowing through the inner pipe. In addition, when the ship is in stand-by or emergency condition, underwater welding to control the leakage of sea water from a hole of its pipe is very important in an industrial safety point of view. In this study possibility of underwater welding to control leakage of sea water and corrosion property of its welding zone were investigated with the electrochemical methods by parameters of welding methods and welding electrodes when underwater welding is achieved with a such case that sea water is being leaked out with a height at 50mm from a hole of $2.5mm{\emptyset}$ of test pipe. Corrosion resistance of weld metal zone is better than the base metal and its hardness is higher than that of the base metal. However corrosion potential of weld metal zone showed a negative value than that of the base metal, therefore weld metal zone is preferentially corroded rather than the base metal by performance of galvanic cell due to difference of corrosion potential between weld metal zone and base metal. Eventually it is suggested that leakage of sea water is successfully controlled by underwater welding,

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

An Electrochemical Evaluation on Corrosion Properties of Welding Zone of Stainless Steel by GTAW (GTAW에 의한 스테인리스강 용접부위의 부식특성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Lee, Kyu-Hwan;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.678-685
    • /
    • 2010
  • GTAW was carried out to the austenitic 304(STS 304) and 22 APU stainless steels. In this case, difference of the corrosion characteristics of welded zone with STS 304 and 22APU mentioned above was investigated with electrochemical methods. Vickers hardness of weld metal in case of STS 304 (Hv-250) showed a relatively higher value than this of 22 APU(Hv-217). The corrosion current densities of weld metal of 22APU and heat affected zone of STS 304 were observed at the highest value compared to those of other welding zone respectively. This is probably because chromium depletion field due to chromium carbide formed to weld metal of 22APU and to heat affected zone of STS 304 can preferentially easily be corroded with more active anode than other fields. Consequently it is thought that application of the other welding methods like as laser welding or using of the optimum filler metals is necessary to improve the corrosion resistance of welding parts of these steels.