• Title/Summary/Keyword: Corroded Pipeline

Search Result 33, Processing Time 0.019 seconds

Hybrid-Biocomposite Material for Corrosion Prevention in Pipeline: a review

  • Suriani, M.J.;Nik, W.B. Wan
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-89
    • /
    • 2017
  • One of the most challenging issues in the oil and gas industry is corrosion assessment and management in subsea structures or equipment. At present, almost all steel pipelines are sensitive to corrosion in harsh working environments, particularly in salty water and sulphur ingress media. Nowadays, the most commonly practiced solution for a damaged steel pipe is to entirely remove the pipe, to remove only a localized damaged section and then replace it with a new one, or to cover it with a steel patch through welding, respectively. Numerous literatures have shown that fiber-reinforced polymer-based composites can be effectively used for steel pipe repairs. Considerable research has also been carried out on the repair of corroded and gouged pipes incorporated with hybrid natural fiber-reinforced composite wraps. Currently, further research in the field should focus on enhanced use of the lesser and highly explored hybrid-biocomposite material for the development in corrosion prevention. A hybrid-biocomposite material from renewable resource based derivatives is cost-effective, abundantly available, biodegradable, and an environmentally benign alternative for corrosion prevention. The aim of this article is to provide a comprehensive review and to bridge the gap by developing a new hybrid-biocomposite with superhydrophobic surfaces.

Evaluation of Corrosion Characteristics on Welding Zone of Leakage SeawaterPipe Welded by Underwater Welding Electrode (수중 용접봉으로 용접한 누수배관 용접부위의 부식 특성 평가)

  • Moon, Kyung-Man;Lee, Sung-Yul;Kim, Yun-Hae;Lee, Myung-Hyoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1240-1247
    • /
    • 2008
  • Leakage trouble on the sea water pipeline in engine room is often resulted from a localized corrosion due to severe corrosive environment caused by both high speed and high pressure of sea water flowing through the inner pipe. In addition, when the ship is in stand-by or emergency condition, underwater welding to control the leakage of sea water from a hole of its pipe is very important in an industrial safety point of view. In this study possibility of underwater welding to control leakage of sea water and corrosion property of its welding zone were investigated with the electrochemical methods by parameters of welding methods and welding electrodes when underwater welding is achieved with a such case that sea water is being leaked out with a height at 50mm from a hole of $2.5mm{\emptyset}$ of test pipe. Corrosion resistance of weld metal zone is better than the base metal and its hardness is higher than that of the base metal. However corrosion potential of weld metal zone showed a negative value than that of the base metal, therefore weld metal zone is preferentially corroded rather than the base metal by performance of galvanic cell due to difference of corrosion potential between weld metal zone and base metal. Eventually it is suggested that leakage of sea water is successfully controlled by underwater welding,

Groundwater Contamination by Cation, Anion and Pesticides (지하수중 음이온, 양이온, 및 금속의 함량)

  • 김형석;정세영;최중명
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.111-128
    • /
    • 1992
  • According to the increase of population and industrialization, the quality of our drinking water are becoming worse by the contamination of resources, production of THM and other halogenated hydrocarbons during the purifying process, the problem of corroded water supplying pipeline, and the water reservoir tanks, Many people choose groundwater to drink instead of city tap water, but sometimes we get report about groundwater contamination by wastes, swage, septic tank, etc. It is reported that in U. S. over 20% of population are drinking groundwater, but U. S EPA reported the groundwater contamination by pesticides, herbicides, fungicides, fertilizer, and various chemical substances. Craun, et at announced the groundwater contamination by bacteria which are related with poor installation of septic tank. Johnson and Kross mentioned aboutmethemoglobinemia by NO3-N originated from human and animal feces, organic chemicals, and fertilizer, and as the results the infant mortality could be risen. Some scientist also reported the high concentration of metals in groundwaters and some cation and anions, and volatile organic compou nds. Authors investigated 80 groundwaters in urban, agricultural, and industrial area during last 3 month(June - August) to check any drinking water quality parameters are exceeding the standards. The results were as follow. 1, The average value of ammonia nitrate were within the standard, but 11.76% of urban area were exceeded the 10 rpm standard, in agricultural area 42.3175 were exceeded, and in industrial area 20.2% were exceeded the drinking water standard of 10 ppm. the highest concentration was 29.37 ppd in industrial area. 2. The mean value of metals is not exceeded the standard, but there were some groundwater whose Mn value was 0.424 ppm(standard is 0,3 ppm) in urban area, 0.737 rpm in agricultural area, and 5.188 ppm in industrial area. The highest Zn value was 1.221 ppm (standard is 1.0 ppm)was found in industrial area. 3. The percentage of contamination by general bacteria was 8.82% in urban area, 15.38% in agricultural area, and 15.00% in industrial area. Escherichia coil group was also contaminated by 35.29% in urban area, 30.76% in agricultural area, and 30.00% in industrial area. 4, The pH value was within the standard which means there was no influence by acid or alkali chemicals, nor acid rain Through the above results, all the groundwater should be tested to check the safety for drinking water and should make some alternative methods suitable for drink.

  • PDF