• 제목/요약/키워드: Correspondence Matching

검색결과 113건 처리시간 0.027초

특징창과 특징링크를 이용한 스테레오 특징점의 정합 성능 향상 (Enhancement of Stereo Feature Matching using Feature Windows and Feature Links)

  • 김창일;박순용
    • 정보처리학회논문지B
    • /
    • 제19B권2호
    • /
    • pp.113-122
    • /
    • 2012
  • 스테레오 정합(stereo matching) 기술은 주어진 두 영상에서 동일한 물체의 영상점이 어떤 위치 관계를 가지고 있는지를 결정하는 기술이다. 본 논문에서는 영상 특징점에 대해 스테레오 위치관계를 결정하는 새로운 스테레오 특징점 정합(stereo feature matching) 방법을 제시한다. 제안하는 방법은 주어진 스테레오 영상에서 FAST 추출기를 이용하여 특징점을 추출하고, 특징점 벡터들의 정보들을 내부에 포함하는 특징창(feature window)이라는 공간을 정의하여 스테레오 정합의 성능을 향상한다. 제안하는 방법은 표준 영상에 추출된 특징점들에 대해 특징창을 생성하고, 참조 영상에서 표준 영상의 특징창과 가장 유사한 특징창을 탐색 및 결정한 다음, 결정된 두 개의 특징창 내부의 특징점들의 시차관계는 특징링크(feature link)를 생성하여 시차를 결정한다. 만약, 이 과정에서 시차가 결정되지 않은 특징점들이 있다면, 특징창 내의 결정된 시차 정보를 이용하여 시차 값을 보간한다. 마지막으로, 제안하는 방법의 성능을 검증하기 위해 결과 영상과 정답 영상의 시차를 비교하여 정합 정확성과 수행시간을 비교하였다. 또한, 기존의 특징점 기반 스테레오 정합 방법들과 제안하는 방법의 성능을 비교 및 분석하였다.

A METHOD FOR ADJUSTING ADAPTIVELY THE WEIGHT OF FEATURE IN MULTI-DIMENSIONAL FEATURE VECTOR MATCHING

  • Ye, Chul-Soo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.772-775
    • /
    • 2006
  • Muilti-dimensional feature vector matching algorithm uses multiple features such as intensity, gradient, variance, first or second derivative of a pixel to find correspondence pixels in stereo images. In this paper, we proposed a new method for adjusting automatically the weight of feature in multi-dimensional feature vector matching considering sharpeness of a pixel in feature vector distance curve. The sharpeness consists of minimum and maximum vector distances of a small window mask. In the experiment we used IKONOS satellite stereo imagery and obtained accurate matching results comparable to the manual weight-adjusting method.

  • PDF

정합 일치성을 이용한 반복 이완 스테레오 정합 (A Stereo Matching by the Iterative Relaxation Using the Consensus of Matching Possibility)

  • 이왕국;김용석;도경훈;하영호
    • 전자공학회논문지B
    • /
    • 제32B권1호
    • /
    • pp.39-49
    • /
    • 1995
  • Stereo vision is useful to obtain three dimensional depth information from two images taken from different view points. In this paper, we reduce searching area for correspondence by using the intra-scanline constraint, and utilize the inter-scanline constraint and the property of disparity continuity among the neighboring pixels for relaxation. Nodes with 3-D stucture are located on the axes of two views, and have matching possibility of correspondent pixels of two images. A matching is accepted if a node at the intersection of the disparity axes has the greatest matching possibility. Otherwise, the matching possibility of the node is updated by relaxation with the cooperation of neighboring nodes. Further relaxation with competition of two views is applied to a matching possibility of randomly selected node. The consensus of two views increases the confidence of matching, and removes a blurring phenomenon on the discontinuity of object. This approach has been tested with various types of image such as random dot stereogram and aerial image, and the experimental results show good matching performance.

  • PDF

A study on correspondence problem of stereo vision system using self-organized neural network

  • 조영빈;권대갑
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.170-179
    • /
    • 1993
  • In this study, self-organized neural network is used to solve the vorrespondence problem of the axial stereo image. Edge points are extracted from a pair of stereo images and then the edge points of rear image are assined to the output nodes of neural network. In the matching process, the two input nodes of neural networks are supplied with the coordi- nates of the edge point selected randomly from the front image. This input data activate optimal output node and its neighbor nodes whose coordinates are thought to be correspondence point for the present input data, and then their weights are allowed to updated. After several iterations of updating, the weights whose coordinates represent rear edge point are converged to the coordinates of the correspondence points in the front image. Because of the feature map properties of self-organized neural network, noise-free and smoothed depth data can be achieved.

  • PDF

다해상도 가법과 AD-Census를 이용한 유전 알고리즘 기반의 스테레오 정합 (A Stereo Matching Based on A Genetic Algorithm Using A Multi-resolution Method and AD-Census)

  • 홍석근;조석제
    • 융합신호처리학회논문지
    • /
    • 제13권1호
    • /
    • pp.12-18
    • /
    • 2012
  • 스테레오 대응성은 스테레오 비전에서 중요한 문제이다. 본 논문은 다해상도 기법과 AD-Census를 이용한 유전 알고리즘 기반의 스테레오 정합 기법을 제안한다. 정합 환경을 최적화 문제로 간주하여 유전 알고리즘으로 변위를 탐색한다. 그리고 에지 픽셀을 이용한 적응적 염색체 구조와 교배 방식을 적용한다. 비용함수는 스테레오 정합에서 주로 고려할 수 있는 제약 조건으로 구성하였고, 변위오차를 줄이기 위해 AD-Census 척도를 사용하였다. 처리의 효율을 높이기 위해 영상 피라미드 방법을 적용하여 최저해상도에서 최초 변위 도를 계산한다. 그리고 최초 변위도는 다음 해상도 단계로 전파되어, 보간된 후 지역 특징 벡터를 이용하여 정제를 수행한다. 실험을 통해 제안한 방법이 다른 유전 알고리즘 기반 기법들에 비해 변위 탐색 시간을 감소시킬 뿐만 아니라 정합의 타당성을 보증함을 확인하고자 한다.

인공신경망을 이용한 삼차원 물체의 인식과 정확한 자세계산 (3D Object Recognition and Accurate Pose Calculation Using a Neural Network)

  • 박강
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1929-1939
    • /
    • 1999
  • This paper presents a neural network approach, which was named PRONET, to 3D object recognition and pose calculation. 3D objects are represented using a set of centroidal profile patterns that describe the boundary of the 2D views taken from evenly distributed view points. PRONET consists of the training stage and the execution stage. In the training stage, a three-layer feed-forward neural network is trained with the centroidal profile patterns using an error back-propagation method. In the execution stage, by matching a centroidal profile pattern of the given image with the best fitting centroidal profile pattern using the neural network, the identity and approximate orientation of the real object, such as a workpiece in arbitrary pose, are obtained. In the matching procedure, line-to-line correspondence between image features and 3D CAD features are also obtained. An iterative model posing method then calculates the more exact pose of the object based on initial orientation and correspondence.

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • 한국측량학회지
    • /
    • 제25권6_1호
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.

정합 문제 해결을 위한 가능도 기반의 이완 처리 알고리즘 (Relaxation algorithm to solve correspondence problem based on possibility distribution)

  • 한규필;김용석;박영식;송근원;하영호
    • 전자공학회논문지S
    • /
    • 제34S권9호
    • /
    • pp.109-117
    • /
    • 1997
  • A new relaxation algorithm based on distribution of matched errors and possibility is proposed to solve efficiently correspondence problem. This algorithm can be applied to various method, such as BMA, feature-, and region-based matching methods, by modifying its smoothness function. It consists of two stages which are transformation and iteration process. In transformation stage, the errors obtained by any matching algorithm are transformed to possibility values according to these statistical distribution. Each grade of possility is updated by some constraints which are defined as smoothness, uniqueness, and discontinuity factor in iteration stage. The discontinuity factor is used to reserve discontinuity of disparity. In conventional methods, it is difficult to find proper weights and stop condition, because only two factors, smoothness and uniqueness, have been used. However, in the proposed mthod, the more smoothing is not ocurred because of discontinuity factor. And it is efective to the various image, even if the image has a severe noise and repeating patterns. In addition, it is shown that the convergence rate and the quality of output are improved.

  • PDF

일치점 정합 알고리즘에 기반한 다시점 비디오의 프레임 오류 은닉 방법 (Frame Loss Concealment for Multi-View Video Sequences Based on Correspondence Matching Algorithm)

  • 송관웅;정태영;오윤제;김창수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.255-256
    • /
    • 2007
  • We propose a frame loss concealment algorithm for multi-view video sequences based on correspondence matching, which can hide the effects of frame losses efficiently. To achieve high PSNR performances, we employ a block error concealment scheme to refine the concealed results. Simulation results demonstrate that the proposed algorithm effectively protects the quality of reconstructed videos against transmission errors.

  • PDF

Effective Reconstruction of Stereoscopic Image Pair by using Regularized Adaptive Window Matching Algorithm

  • Ko, Jung-Hwan;Lee, Sang-Tae;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • 제5권4호
    • /
    • pp.31-37
    • /
    • 2004
  • In this paper, an effective method for reconstruction of stereoscopic image pair through the regularized adaptive disparity estimation is proposed. Although the conventional adaptive disparity window matching can sharply improve the PSNR of a reconstructed stereo image, but there still exist some problems of overlapping between the matching windows and disallocation of the matching windows, because the size of the matching window tend to changes adaptively in accordance with the magnitude of the feature values. In the proposed method, the problems relating to the conventional adaptive disparity estimation scheme can be solved and the predicted stereo image can be more effectively reconstructed by regularizing the extimated disparity vector with the neighboring disparity vectors. From the experimental results, it is found that the proposed algorithm show improvements the PSNR of the reconstructed right image by about 2.36${\sim}$2.76 dB, on average, compared with that of conventional algorithms.