• Title/Summary/Keyword: Correlation identification

Search Result 689, Processing Time 0.033 seconds

Damage localization and quantification in beams from slope discontinuities in static deflections

  • Ma, Qiaoyu;Solis, Mario
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.291-302
    • /
    • 2018
  • This paper presents a flexibility based method for damage identification from static measurements in beam-type structures. The response of the beam at the Damaged State is decomposed into the response at the Reference State plus the response at an Incremental State, which represents the effect of damage. The damage is localized by detecting slope discontinuities in the deflection of the structure at the Incremental State. A denoising filtering technique is applied to reduce the effect of experimental noise. The extent of the damage is estimated through comparing the experimental flexural stiffness of the damaged cross-sections with the corresponding values provided by analytical models of cracked beams. The paper illustrates the method by showing a numerical example with two cracks and an experimental case study of a simply supported steel beam with one artificially introduced notch type crack at three damage levels. A Digital Image Correlation system was used to accurately measure the deflections of the beam at a dense measurement grid under a set of point loads. The results indicate that the method can successfully detect and quantify a small damage from the experimental data.

Genotype Fingerprinting, Differentiation and Association between Morphological Traits and SSR Loci of Soybean Landraces

  • Park, lk-Young
    • Plant Resources
    • /
    • v.1 no.2
    • /
    • pp.81-91
    • /
    • 1998
  • Fifty-nine Korean soybean (Glycine max L. Merr.) landrace accessions were tested for genotype fingerprinting, differentiation and association between morphological traits and SSR profile. Using 8 SSR loci, 59 varieties were divided into 55 groups, and only 4 pairs of varieties were not uniquely identified. The resolving power of SSR for soybean genotyping was much higher than that of the morphological traits that were studied. Identification efficiency also differed among SSR loci. Those loci with higher numbers of alleles distinguished varieties more effectively. Genetic differentiation values of the soybean landraces varied from 0.57 to 0.82 with a mean of 0.68. The number of alleles detected by the 8 loci ranged from 3 to 8. and the effective number of alleles ranged from 2.3 to 5.1. In a study of the association of SSR alleles with morphological traits, some alleles seemed to be related with some specific morphological traits. Comparison of two kinds of dendrograms which were derived from SSR markers and quantitative traits indicated that the dendrograms were not consistent. Considering the correlation between single SSR locus and qualitative traits governed by major genes, the data suggest that alleles of microsatellite loci be more closely related to some traits determined by major genes than those determined by minor genes.

  • PDF

Alternative numerical method for identification of flutter on free vibration

  • Chun, Nakhyun;Moon, Jiho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.351-365
    • /
    • 2017
  • The minimization method is widely used to predict the dynamic characteristics of a system. Generally, data recorded by experiment (for example displacement) tends to contain noise, and the error in the properties of the system is proportional to the noise level (NL). In addition, the accuracy of the results depends on various factors such as the signal character, filtering method or cut off frequency. In particular, coupled terms in multimode systems show larger differences compared to the true value when measured in an environment with a high NL. The iterative least square (ILS) method was proposed to reduce these errors that occur under a high NL, and has been verified in previous research. However, the ILS method might be sensitive to the signal processing, including the determination of cutoff frequency. This paper focused on improving the accuracy of the ILS method, and proposed the modified ILS (MILS) method, which differs from the ILS method by the addition of a new calculation process based on correlation coefficients for each degree of freedom. Comparing the results of these systems with those of a numerical simulation revealed that both ILS and the proposed MILS method provided good prediction of the dynamic properties of the system under investigation (in this case, the damping ratio and damped frequency). Moreover, the proposed MILS method provided even better prediction results for the coupling terms of stiffness and damping coefficient matrix.

Identification of Quantitative Trait Loci Associated with Traits of Soybean for Sprout

  • Lee, Suk-Ha;Park, Keum-Yong;Lee, Hong-Suk;H. Roger Boerma
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.166-170
    • /
    • 1999
  • The identification of quantitative trait loci (QTL) has the potential to enhance the efficiency of im- proving food processing traits of soybean. In this study, 92 restriction fragment length polymorphism (RFLP) loci and two morphological markers (W$_1$ and T) were used to identify QTL associated with food processing traits of soybean for sprout in 83 F$_2$-derived lines from a cross of 'Pureun' x 'Jinpum 2'. The genetic map consisted of 76 loci which covered about 760 cM and converged into 20 linkage groups. Eighteen markers remained unlinked. Phenotypic data were collected for hypocotyl length, abnormal seedling rate, and sprout yield seven days after seed germination at 2$0^{\circ}C$. Based on the single-factor analysis of variance, eight independent markers were associated with hypocotyl length. Four of seven markers associated with abnormal seedling rate were identified as independent. Seven loci were associated with sprout yield. For three different traits, much of genetic variation was explained by the identified QTL in this population. Several RFLP markers in linkage group (LG) Bl were detected as being associated with three traits, providing a genetic explanation for the biological correlation of sprout yield with hypocotyl length (r=OA07***) and with abnormal seedling rate (r=-406***).

  • PDF

Reliability and Validity Analysis of the Instrument on Pattern Identifications for Depression (우울증 변증도구의 신뢰도, 타당도 평가)

  • Lee, Hun-Soo;Kang, Wee-Chang;Jung, In-Chul
    • Journal of Oriental Neuropsychiatry
    • /
    • v.26 no.4
    • /
    • pp.407-416
    • /
    • 2015
  • Objectives: This study was performed to evaluate the reliability and validity of the instrument on pattern identifications for depression. Methods: Two assessors carried out an evaluation about the instrument on pattern identifications for depression, targeting 201 participants, who after taking the HAM-D score over 12 or under 7 twice. Results: Inter-assessor reliability was higher than intra-assessor reliability in a reliability analysis about classification of pattern identification evaluated by the instrument on pattern identifications for depression. Reliability of intra-assessor and inter-assessor showed a moderate to strong agreement when reliability analysis about classification score of the pattern identification had been performed. Reliability analysis to evaluate the validity of the instrument on pattern identifications for depression showed moderate agreement. Conclusions: The results reveal that reliability analysis of the instrument on pattern identifications for depression showed an over moderate agreement and validity analysis represented a positive correlation.

Comparison of RAPD, AFLP, and EF -1 α Sequences for the Phylogenetic Analysis of Fusarium oxysporum and Its formae speciales in Korea

  • Park, Jae-Min;Kim, Gi-Young;Lee, Song-Jin;Kim, Mun-Ok;Huh, Man-Kyu;Lee, Tae-Ho;Lee, Jae-Dong
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • Although Fursarium oxysporum causes diseases in economically important plant hosts, identification of F. oxysporum formae speciales has been difficult due to confusing phenotypic classification systems. To resolve these complexity, we evaluated genetic relationship of nine formae speciales of F. oxysporum with random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and translation elongation factor-l alpha ($EF-1{\alpha}$) gene. In addition, the correlation between mycotoxin content of fusaric acid and isolates based on molecular marker data was evaluated using the modified Mantel's test. According to these result, these fusaric acid-producing strains could not identify clearly, and independent of geographic locations and host specificities. However, in the identification of F. oxysporum formae speciales, especially, AFLP analysis showed a higher discriminatory power than that of a the RAPD and $EF-1{\alpha}$ analyses, all three techniques were able to detect genetic variability among F. oxysporum formae speciales in this study.

Finite element modeling of a deteriorated R.C. slab bridge: lessons learned and recommendations

  • Ho, I-Kang;Shahrooz, Bahram M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.259-274
    • /
    • 1998
  • The test results from non-destructive and destructive field testing of a three-span deteriorated reinforced concrete slab bridge are used as a vehicle to examine the reliability of available tools for finite-element analysis of in-situ structures. Issues related to geometric modeling of members and connections, material models, and failure criteria are discussed. The results indicate that current material models and failure criteria are adequate, although lack of inelastic out-of-plane shear response in most nonlinear shell elements is a major shortcoming that needs to be resolved. With proper geometric modeling, it is possible to adequately correlate the measured global, regional, and local responses at all limit states. However, modeling of less understood mechanisms, such as slab-abutment connections, may need to be finalized through a system identification technique. In absence of the experimental data necessary for this purpose, upper and lower bounds of only global responses can be computed reliably. The studies reaffirm that success of finite-element models has to be assessed collectively with reference to all responses and not just a few global measurements.

Identification Of Jet Components Of CTA 102 On Milliarcsecond Scales Using The iMOGABA Program

  • Kim, Sang-Hyun;Lee, Sang-Sung;Hodgson, Jeffrey A.;Lee, Jee Won;Kang, Sincheol;Yoo, Sung-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.76.1-76.1
    • /
    • 2019
  • CTA 102, one of gamma-ray bright active galactic nuclei (AGN) has been observed with Korean very long baseline interferometry (VLBI) network (KVN) during the period of 2012 December-2018 May as part of interferometric Monitoring Of Gamma-ray Bright AGN (iMOGABA). Multi-frequency VLBI observations enable us to compare the milliarcsecond(mas)-scale iMOGABA images of relativistic jets with those from the Monitoring Of Jets in AGN with Very long baseline array (VLBA) Experiments (MOJAVE) and the VLBA-Boston University(BU)-BLAZAR programs which use VLBA with its angular resolutions of 0.2-1.3 mas. In spite of the relative larger beam sizes of KVN (1-10 mas), we are able to identify jet components of CTA 102 using the KVN multi-frequency VLBI observations with those resolved with VLBA. Considering an instrumental beam blending effect on the jet component identification, we were able to obtain a blending shift of the core position based on a convolution analysis using the VLBA data. When we apply the core position shift to the KVN images of CTA 102, we find that the identified jet components of CTA 102 from the KVN observations are well matched with those from the VLBA observations. Based on the results of the analysis, we may be able to study the jet kinematics and its correlation with gamma-ray flare activity.

  • PDF

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

A numerical study on vibration-based interface debonding detection of CFST columns using an effective wavelet-based feature extraction technique

  • Majid Gholhaki;Borhan Mirzaei;Mohtasham Khanahmadi;Gholamreza Ghodrati Amiri;Omid Rezaifar
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.45-59
    • /
    • 2024
  • This paper aims to investigate the impact of interfacial debonding on modal dynamic properties such as frequencies and vibration mode shapes. Furthermore, it seeks to identify the specific locations of debonding in rectangular concrete-filled steel tubular (CFST) columns during the subsequent stage of the study. In this study, debonding is defined as a reduction in the elasticity modulus of concrete by a depth of 3 mm at the connection point with the steel tube. Debonding leads to a lack of correlation between primary and secondary shapes of vibration modes and causes a reduction in the natural frequency in all modes. However, directly comparing changes in vibration responses does not allow for the identification of debonding locations. In this study, a novel irregularity detection index (IDI) is proposed based on modal signal processing via the 2D wavelet transform. The suggested index effectively reveals relative irregularity peaks in the form of elevations at the debonding locations. As the severity of damage increases at a specific debonding location, the relative irregularity peaks would increase only at that specific point; in other words, the detection or non-detection of a debonding location using IDI has minimal effects on the identification of other debonding locations.