Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.82-84
/
2021
Through the smart factory construction project, sensor data such as power, vibration, pressure, and temperature are collected from production facilities, and services such as predictive maintenance, defect prediction, and abnormality detection are developed through data analysis. In general, in the case of manufacturing data, because the imbalance between normal and abnormal data is extreme, an anomaly detection service is preferred. In this paper, FFT method is used to extract feature data of manufacturing data as a pre-stage of the anomaly detection service development. Using this method, we classified the produced products and confirmed results. In other words, after FFT of the representative pattern for each product, we verified whether product classification was possible or not, by calculating correlation coefficient.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.7
/
pp.1564-1570
/
2013
In this paper, we propose a robust pupil detection method using rank order filter and cross-correlation. Potential pupil candidates are detected using rank order filter. Eye region is binarized using variable threshold to find eyebrow, and pupil candidates at the eyebrow are removed. The positions of pupil candidates are corrected, the pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using cross-correlation, we select a pair with the largest similarity measure as a final pupil. The experiments have been performed for 500 images of the BioID face database. The results show that it achieves the high detection rate of 96.8% and improves about 11.6% than existing method.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.3
/
pp.361-370
/
2017
In this paper, correlation analysis was performed between questionnaire and machine learning based aggressive tendency measurements. this study is part of a aggressive driver detection using machine learning and questionnaire. To collect two types tendency from questionnaire and measurements system, we constructed experiments environments and acquired the data from 30 drivers. In experiment, the machine learning based aggressive tendency measurements system was designed using a driver behavior detection model. And the model was constructed using accelerate and brake position data and hidden markov model method through supervised learning. We performed a correlation analysis between two types tendency using Pearson method. The result was represented to high correlation. The results will be utilize for fusing questionnaire and machine learning. Furthermore, It is verified that the machine learning based aggressive tendency is unique to each driver. The aggressive tendency of driver will be utilized as measurements for advanced driver assistance system such as attention assist, driver identification and anti-theft system.
A method of the leak detection from the pipe system by using accelerometer is proposed. The signal detected from accelerometer is proved experimentally to be a dispersive wave. Based on the experiments, a method using the narrow band pass filter and the unit impulse response function is analyzed. The method uses the characteristics of the unit impulse response function, that the function is available evenin the narrow band signal because, unlike the cross correlation, it is normalized by the auto spectrum. The accelerometer is quite easier to use than the hydrophone in adapting to the pipe system.
Journal of information and communication convergence engineering
/
v.9
no.6
/
pp.747-752
/
2011
The position detection of overlapping area in the interframe for image stitching using auto and cross correlation function (ACCF) and compounding one image with the stitching algorithm is presented in this paper. ACCF is used by autocorrelation to the featured area to extract the filter mask in the reference (previous) image and the comparing (current) image is used by crosscorrelation. The stitching is detected by the position of high correlation, and aligns and stitches the image in shifting the current image based on the moving vector. The ACCF technique results in a few computations and simplicity because the filter mask is given by the featuring block, and the position is enabled to detect a bit movement. Input image captured from CMOS is used to be compared with the performance between the ACCF and the window correlation. The results of ACCF show that there is no seam and distortion at the joint parts in the stitched image, and the detection performance of the moving vector is improved to 12% in comparison with the window correlation method.
In this paper, we propose a novel method for the cross-correlation based double-talk detection (DTD), which employing the Gaussian Mixture Model (GMM) in the frequency domain. The proposed algorithm transforms the cross correlation coefficient used in the time domain into 16 channels in the frequency domain using the discrete fourier transform (DFT). The channels are then selected into seven feature vectors for GMM and we identify three different regions such as far-end, double-talk and near-end speech using the likelihood comparison based on those feature vectors. The presented DTD algorithm detects efficiently the double-talk regions without Voice Activity Detector which has been used in conventional cross correlation based double-talk detection. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional schemes. especially, show the robustness against detection errors resulting from the background noises or echo path change which one of the key issues in practical DTD.
Stayed cables are the key components for transmitting loads in cable-stayed bridges. Therefore, it is very important to evaluate the cable force condition to ensure bridge safety. An online condition assessment and anomaly localization method is proposed for cables based on the spatiotemporal correlation of grouped cable forces. First, an anomaly sensitive feature index is obtained based on the distribution characteristics of grouped cable forces. Second, an adaptive anomaly detection method based on the k-nearest neighbor rule is used to perform dissimilarity measurements on the extracted feature index, and such a method can effectively remove the interference of environment factors and vehicle loads on online condition assessment of the grouped cable forces. Furthermore, an online anomaly isolation and localization method for stay cables is established, and the complete decomposition contributions method is used to decompose the feature matrix of the grouped cable forces and build an anomaly isolation index. Finally, case studies were carried out to validate the proposed method using an in-service cable-stayed bridge equipped with a structural health monitoring system. The results show that the proposed approach is sensitive to the abnormal distribution of grouped cable forces and is robust to the influence of interference factors. In addition, the proposed approach can also localize the cables with abnormal cable forces online, which can be successfully applied to the field monitoring of cables for cable-stayed bridges.
The cognitive radio communication is taking the attentions because the development of the technique came to be possible to analyze wireless signals. In the IEEE 802.22 WRAN Systems[1], how to detect a spectrum and signals is continuously studied. In this paper, we propose the efficient signal detection method using SCF (Spectral Correlation Function). It is easy to detect the signal feature when we are using the SCF. Because most modulated signals have the cyclo-stationarity which is unique for each signal. But the fading channel effected serious influence even though it detects the feature of the signal. We applied LMS(Least Mean Square) filter for the compensation of the signal which is effected the serious influence in the fading channel. And we analyze some signal patterns through the SCF. And we show the unique signal feature of each signal through the SCF method. It is robust for low SNR(Signal to Noise Ratio) environment and we can distinguish it in the fading channel using LMS Filter.
Journal of the Korean Institute of Intelligent Systems
/
v.26
no.6
/
pp.464-470
/
2016
In this paper, we propose an improved face detection algorithm and determination method for drowsiness status of driver from the opening and closing frequency of the detected eye. For this purpose, face, eyes, nose, and mouth are detected based on conventional Viola-Jones face detection algorithm and spatial correlation of face. Here the spatial correlation of face is performed by DFP(Detect Face Part) based on seven characteristics. The experimental results on Caltect face image database revealed that the detection rates of noise particularly showed the improved performance of 13.78% in comparison to that of the previous Viola-Jones algorithm. Furthermore, we analyze the driver's drowsiness determination cumulative value of the eye closed state as a function of time based on SVM (Support Vector Machine) and PERCLOS(Percentage Closure of Eyes). The experimental results confirmed the usefulness of the proposed method by obtaining a driver's drowsiness determination rate of 93.28%.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.12B
/
pp.2401-2406
/
1999
Various techniques extracting feature vectors have been studied for the cut detection in compressed video data. In case of using the histogram of occurrence of pixel's values as a feature vector, the precise detection of cuts would not be expected because of not considering the spatial correlation of pixels. And more sophisticated algorithms such as CCV(Color Coherent Vector) and Correlrogram tend to be used. Though these methods can be able to detect cuts rather precisely, they require much more processing time because of a enormous amount of computations. In this paper we propose a method of the cut detection using spatial correlation of DC values of luminance components in MPEG video sequence. This requires less processing time and also It can increase the rates of detecting the correct cuts by using advanced comparative method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.