• Title/Summary/Keyword: Correlation Propagation Neural Networks(CPNN)

Search Result 2, Processing Time 0.016 seconds

Correlation Propagation Neural Networks for Safe sensing of Faulty Insulator in Power Transmission Line (송전선로 노화애자의 안전 감지를 위한 상관전파신경망)

  • Kim, Jong-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.511-515
    • /
    • 2009
  • For detecting of the faulty insulator, Correlation Propagation Neural Networks(CPNN) has been proposed. Faulty insulator is reduced the rate of insulation extremely, and taken the results dirty and injured. It is necessary to detect the faulty insulator and exchange the new one. And thus, we have designed the CPNN to be detected that insulators by the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. 1-D CPNN hardware has been implemented with general purpose. Experiments with static and dynamic signals have been done upon the CPNN hardware. Through the results of simulation experiments, we define the ability of real-time detecting the faulty insulators.

Correlation Propagation Neural Networks for processing On-line Interpolation of Multi-dimention Information (임의의 다차원 정보의 온라인 전송을 위한 상관기법전파신경망)

  • Kim, Jong-Man;Kim, Won-Sop
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.83-87
    • /
    • 2007
  • Correlation Propagation Neural Networks is proposed for On-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D CPNN hardware has been implemented with general purpose analog ICs to test the interpolation capability of the proposed neural networks. Experiments with static and dynamic signals have been done upon the CPNN hardware.

  • PDF