• Title/Summary/Keyword: Correlation Analysis. Load

Search Result 388, Processing Time 0.027 seconds

Evaluation of J-R Curve for Aluminum 5083 Alloy Weldment by Load Ratio Analysis (Load Ratio 해석에 의한 알루미늄 5083 합금 용접부의 J-R곡선 평가)

  • 윤한기;김연겸
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.178-186
    • /
    • 1997
  • The purpose of this study is to evaluate the J-R curve characteristics for the 5083 aluminum alloy weldment by the load ratio analysis. The results of the load ratio analysis are compared with those of the J-R curve which are obtained by the ASTM unloading compliance method. The crack length calculated by the load ratio analysis is agrees well with the measured final crack length. The slope of the exponential J-R curve estimated by the load ratio analysis is slightly smaller than that by the ASTM unloading compliance method. The exponential correlation of the J-R curve for the 5083 aluminum alloy base metal by the load ratio analysis is J = 93.88 ${\Delta}{\alpha}^{0.375}$. That for the weld metal and HAZ is J = 69.87 ${\Delta}{\alpha}^{0.389}$ and J = 70.59 ${\Delta}{\alpha}^{0.359}$ respectively. The J-R curve obtained by the ASTM unloading compliance method is overpredicted and should be offsetted due to the initial negative crack. On the other hand, the load ratio analysis method can evaluate the J-R curve by only load displacement curve without particular crack measurement equipment.

  • PDF

Study of Peak Load Demand Estimation Methodology by Pearson Correlation Analysis with Macro-economic Indices and Power Generation Considering Power Supply Interruption

  • Song, Jiyoung;Lee, Jaegul;Kim, Taekyun;Yoon, Yongbeum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1427-1434
    • /
    • 2017
  • Since the late 2000s, there has been growing preparation in South Korea for a sudden reunification of South and North Korea. Particularly in the power industry field, thorough preparations for the construction of a power infrastructure after reunification are necessary. The first step is to estimate the peak load demand. In this paper, we suggest a new peak demand estimation methodology by integrating existing correlation analysis methods between economic indicators and power generation quantities with a power supply interruption model in consideration of power consumption patterns. Through this, the potential peak demand and actual peak demand of the Nation, which experiences power supply interruption can be estimated. For case studies on North Korea after reunification, the potential peak demand in 2015 was estimated at 5,189 MW, while the actual peak demand within the same year was recorded as 2,461 MW. The estimated potential peak demand can be utilized as an important factor when planning the construction of power system facilities in preparation for reunification.

An Analysis on the Winter Season's Distribution Load Characteristics (동계 배전부하 특성분석)

  • Park, Chang-Ho;Cho, Seong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.935-938
    • /
    • 1998
  • This paper presents the method of load management to measure the winter season's load characteristics of distribution pole transformers. The proposed load model constructed used by the quadratic load correlation coefficients. To verify the estimated model, we compared with linear model by calculation results. The results can contribute an improvement of conventional load management method.

  • PDF

Characteristics of Runoff Load from Nonpoint Source Pollutants in the Lake Doam Watershed (도암호 유역에서 비점오염물질의 유출부하 특성)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Gim, Giyoung;Kang, Phil-Goo;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.135-147
    • /
    • 2018
  • In order to investigate the runoff characteristics of nonpoint source pollutants in the Lake Doam watershed, water quality and flow rate were monitored for 38-rainfall events from 2009 to 2016. The EMC values of SS, COD, TN and TP were in the range of 33~2,169, 3.5~56.9, 0.09~7.65 and $0.06{\sim}2.21mg\;L^{-1}$, respectively. As a result of analyzing the effect of rainfall factor on the nonpoint source pollutant load, EMCs of SS, COD and TP showed a statistically significant correlation with rainfall (RA) (p<0.01) and SS showed highly significant correlation with maximum rainfall intensity (MRI, R=0.48). The load ranges of SS, COD, TN and TP were 10.4~11,984.6, 1.1~724.4, 0.6~51.6 and $0.03{\sim}22.85ton\;event^{-1}$, respectively, showing large variation depending on the characteristics of rainfall events. The effect of rainfall on the load was analyzed. SS, COD and TP showed a positive correlation, but TN did not show any significant correlation. The annual load of SS was the highest with $88,645tons\;year^{-1}$ in 2011 when rainfall was the highest with 1,669 mm. The result of impact analysis of nonpoint source pollution reduction project and land-use change on runoff load showed that pollutant load significantly reduced from 2009 to 2014 but SS and TP loads were increased from 2014 to 2016 due to increase in construction area. Therefore, we suggested that nonpoint source pollution abatement plan should be continued to reduce the soil loss and pollutants during rainfall, and countermeasures to reduce nonpoint source pollution due to construction need to be established.

Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope

  • Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.15-30
    • /
    • 2020
  • The probabilistic bearing capacity of a strip footing placed on the edge of a purely cohesive reinforced soil slope is computed by combining lower bound finite element limit analysis technique with random field method and Monte Carlo simulation technique. To simulate actual field condition, anisotropic random field model of undrained soil shear strength is generated by using the Cholesky-Decomposition method. With the inclusion of a single layer of reinforcement, dimensionless bearing capacity factor, N always increases in both deterministic and probabilistic analysis. As the coefficient of variation of the undrained soil shear strength increases, the mean N value in both unreinforced and reinforced slopes reduces for particular values of correlation length in horizontal and vertical directions. For smaller correlation lengths, the mean N value of unreinforced and reinforced slopes is always lower than the deterministic solutions. However, with the increment in the correlation lengths, this difference reduces and at a higher correlation length, both the deterministic and probabilistic mean values become almost equal. Providing reinforcement under footing subjected to eccentric load is found to be an efficient solution. However, both the deterministic and probabilistic bearing capacity for unreinforced and reinforced slopes reduces with the consideration of loading eccentricity.

Thermal Load Simulation Analysis on Model Building Estimating Optimum Heat Source Capacity (최적 열원용량 산정을 위한 모델건물 공조부하 시뮬레이션 분석)

  • Park, Jong-Il;Kim, Se-Hwan;Lee, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.427-433
    • /
    • 2007
  • Generally, H.V.A.C load capacity in early planning phase can presume with maximum thermal load. Basic data can prove by air conditioning equipment system data analysis at existing building. There are poor and not reliable alternative presentation. In this paper, measured data after use H.V.A.C load calculation K-load program reply choosing standard building and variables simulation. And I founded peak load correlation graph and mode for several kinds of variable and contents of size. I wish that equipment designer is beaconed to produce optimum capacity at building as quantitative through this result.

An Experimental Study on the Biomechanical Effectiveness of Bone Cement-Augmented Pedicle Screw Fixation with Various Types of Fenestrations

  • Yoon, Sang Hoon;Lee, Sang Hyung;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.779-789
    • /
    • 2022
  • Objective : To analyze the effects of the number and shape of fenestrations on the mechanical strength of pedicle screws and the effects of bone cement augmentation (BCA) on the pull-out strength (POS) of screws used in conventional BCA. Methods : For the control group, a conventional screw was defined as C1, a screw with cannulated end-holes was defined as C2, a C2 screw with six pinholes was defined as C3, and the control group type was set. Among the experimental screws, T1 was designed using symmetrically placed thru-hole type fenestrations with an elliptical shape, while T2 was designed with half-moon (HM)-shaped asymmetrical fenestrations. T3 and T4 were designed with single HM-shaped fenestrations covering three pitches and five pitches, respectively. T5 and T6 were designed with 0.6-mm and 1-mm wider fenestrations than T3. BCA was performed by injecting 3 mL of commercial bone cement in the screw, and mechanical strength and POS tests were performed according to ASTM F1717 and ASTM F543 standards. Synthetic bone (model #1522-505) made of polyurethane foam was used as a model of osteoporotic bone, and radiographic examinations were performed using computed tomography and fluoroscopy. Results : In the fatigue test, at 75% ultimate load, fractures occurred 7781 and 9189 times; at 50%, they occurred 36122 and 82067 times; and at 25%, no fractures occurred. The mean ultimate load for each screw type was 219.1±52.39 N for T1, 234.74±15.9 N for T2, 220.70±59.23 N for T3, 216.45±32.4 N for T4, 181.55±54.78 N for T5, and 216.47±29.25 N for T6. In comparison with C1, T1, T2, T3, T4, and T6 showed significantly different ultimate load values (p<0.05). However, when the values for C2 and the fenestrated screws were evaluated with an unpaired t test, the ultimate load value of C2 significantly differed only from that of T2 (p=0.025). The ultimate load value of C3 differed significantly from those of T1 and T2 (C3 vs. T1 : p=0.048; C3 vs. T2 : p<0.001). Linear correlation analysis revealed a significant correlation between the fenestration area and the volume of bone cement (Pearson's correlation coefficient r=0.288, p=0.036). The bone cement volume and ultimate load significantly correlated with each other in linear correlation analysis (r=0.403, p=0.003). Conclusion : Fenestration yielded a superior ultimate load in comparison with standard BCA using a conventional screw. In T2 screws with asymmetrical two-way fenestrations showed the maximal increase in ultimate load. The fenestrated screws can be expected to show a stable position for the formation of the cement mass.

Estimating peak wind load effects in guyed masts

  • Sparling, B.F.;Wegner, L.D.
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.347-366
    • /
    • 2007
  • Guyed masts subjected to turbulent winds exhibit complex vibrations featuring many vibration modes, each of which contributes to various structural responses in differing degrees. This dynamic behaviour is further complicated by nonlinear guy cable properties. While previous studies have indicated that conventional frequency domain methods can reliably reproduce load effects within the mast, the system linearization required to perform such an analysis makes it difficult to relate these results directly to corresponding guy forces. As a result, the estimation of peak load effects arising jointly from the structural action of the mast and guys, such as leg loads produced as a result of guy reactions and mast bending moments, is uncertain. A numerical study was therefore undertaken to study peak load effects in a 295 m tall guyed mast acted on by simulated turbulent wind. Responses calculated explicitly from nonlinear time domain finite element analyses were compared with approximate methods in the frequency domain for estimating peak values of selected responses, including guy tension, mast axial loads and mast leg loads. It was found that these peak dynamic load effects could be accurately estimated from frequency domain analysis results by employing simple, slightly conservative assumptions regarding the correlation of related effects.

Correlation Analysis on the Runoff Pollutants from a Small Plot Unit in an Agricultural Area

  • Kang, Meea;Choi, Byoung-Woo;Lee, Jae-Kwan
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.191-195
    • /
    • 2010
  • This study was carried out to investigate the important factors relating to runoff and pollutant loads in a plot unit located in an agricultural area. Of the precipitation parameters, such as total precipitation, days since last rainfall (ADD, the rainfall was more than 10mm) and average rainfall intensity on runoff, the strongest effect was obtained due to total precipitation, but the rainfall intensity showed a slightly positive correlation. It was expected that both variables, i.e. total precipitation and rainfall intensity, would lead to the generation of greater runoff. In contrast, runoff was negatively correlated with ADD, which is understandable because more infiltration and less runoff would be expected after a long dry period. The TSS load varied greatly, between 75.6 and $5.18{\times}10^4g$, per event. With the exception of TN, the TSS, BOD, COD and TP loads were affected by runoff. The correlations of these items were proportional to the runoff volume, with correlation coefficients (r) greater than 0.70, which are suitable for use as NPS model data. The TSS load showed very good relationships with organics (BOD & COD) and nutrients (TN & TP), with correlation coefficients greater than 0.79. Therefore, the removal of TSS is a promising factor for protecting water basins.

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.