• 제목/요약/키워드: Correction Modeling Method

검색결과 125건 처리시간 0.021초

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권1호
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

Distortion Correction Modeling Method for Zoom Lens Cameras with Bundle Adjustment

  • Fang, Wei;Zheng, Lianyu
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.140-149
    • /
    • 2016
  • For visual measurement under dynamic scenarios, a zoom lens camera is more flexible than a fixed one. However, the challenges of distortion prediction within the whole focal range limit the widespread application of zoom lens cameras greatly. Thus, a novel sequential distortion correction method for a zoom lens camera is proposed in this study. In this paper, a distortion assessment method without coupling effect is depicted by an elaborated chessboard pattern. Then, the appropriate distortion correction model for a zoom lens camera is derived from the comparisons of some existing models and methods. To gain a rectified image at any zoom settings, a global distortion correction modeling method is developed with bundle adjustment. Based on some selected zoom settings, the optimized quadratic functions of distortion parameters are obtained from the global perspective. Using the proposed method, we can rectify all images from the calibrated zoom lens camera. Experimental results of different zoom lens cameras validate the feasibility and effectiveness of the proposed method.

지역 분할 방법에 의한 ISCST3 모델링으로 수도권 지역에서 SO2 농도 예측 연구 (A Study on the Prediction of SO2 Concentrations by the Regional Segment ISCST3 Modeling in the Seoul Metropolitan Area)

  • 구윤서;김성태;신봉섭;신동윤;이정주
    • 환경영향평가
    • /
    • 제12권4호
    • /
    • pp.245-257
    • /
    • 2003
  • $SO_2$ concentrations in the Seoul Metropolitan Area (SMA) were predicted by the regional segment ISCST3 modeling. The SMA was segmented by three modeling regions where the weather monitoring station exists since the area of the SMA, approximately $100km{\times}100km$, is too wide to be modeled by one modeling domain. The predicted concentrations by the model were compared with the measured concentrations at 39 air monitoring stations located in the SMA to validate the ISCST3 modeling coupled with the regional segment approach. The predicted concentrations by the regional segment method showed better performance in depicting the measurements than those by the non-segment ISCST3 modeling. The correction methods of the calculated concentrations reviewed were here the correlation method by the first order linear equation and the ratio method of observed to calculated concentrations. The corrected concentrations by two methods showed good agreement with the measured data. The ratio method was, however, easily applicable to the concentration correction in case of a wide modeling region considered in this study.

표면 모델링을 통한 깊이 영상 내 측정 실패 화소 보정 방법 (Correction Method for Measurement Failure Pixels in Depth Picture using Surface Modeling)

  • 이동석;권순각
    • 한국산업정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.1-8
    • /
    • 2019
  • 본 논문에서는 깊이 영상에서 깊이 카메라의 일시적인 오류로 인해 측정이 되지 않은 깊이 화소의 값을 보정하는 방법을 제안한다. 깊이 영상의 한 블록 내에서 측정이 정상적으로 된 화소의 좌표와 깊이 값을 이용하여, 해당 블록의 깊이 값과 제일 오차가 적은 평면과 곡면을 모델링한다. 그 후 각각의 모델링된 표면을 통해 추정된 깊이 값과 원래 측정된 깊이 값을 비교하여 오차를 계산한다. 그 후 오차가 제일 작게 계산된 표면을 선택한 후, 측정에 실패한 깊이 화소를 선택된 모델링 표면을 통해 깊이 값을 추정함으로써 보정한다. 모의실험 결과 제안된 방법을 통한 보정방법은 $5{\times}5$ 영역의 중간 값을 이용한 보정방법에 비해 보정 성능이 평균 20% 개선되었음을 확인하였다.

Integrated Modeling for the Design of Deformable Mirrors Using a Parametric Module Method

  • Zhu, Junqing;Sha, Wei;Chen, Changzheng;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • 제19권5호
    • /
    • pp.521-530
    • /
    • 2015
  • Active optics is a key technology for future large-aperture space telescopes. In the design of deformable mirrors for space applications, the design parameter trade-off between the number of regularly configured actuators and the correction capability is essential but rarely analyzed, due to the lack of design legacy. This paper presents a parametric module method for integrated modeling of deformable mirrors with regularly configured actuators. A full design parameter space is explored to evaluate the correction capability and the mass of deformable mirrors, using an autoconstructed finite-element parametric modeling method that utilizes manual finite-element meshing for complex structures. These results are used to provide design guidelines for deformable mirrors. The integrated modeling method presented here can be used for future applied optics projects.

Numerical Study on the Correction of Sea Effect in Magnetotelluric (MT) Data

  • Yang, Jun-Mo;Yoo, Hai-Soo
    • 한국지구과학회지
    • /
    • 제30권5호
    • /
    • pp.550-564
    • /
    • 2009
  • When magnetotelluric (MT) data are obtained in the vicinity of the coast, the surrounding seas make it difficult to interpret subsurface structure, especially the deep part of the subsurface. We introduce an iterative method to correct the sea effect, based on the previous topographic correction method that removes the distortion due to topographic changes in seafloor MT data. The method first corrects the sea effect in observed MT impedance, and then inverts corrected response in a model space without the sea. Due to mutual coupling between the sea and the subsurface structure, the correction and inversion steps are iterated until the changes in each result become negligible. The method is tested for 1- and 2-D structures using synthetic MT data produced by 3-D forward modeling including surrounding seas. In all cases, the method closely recovers the true structure assumed to generate synthetic responses after a few iterations.

유전알고리즘을 이용한 색 보정용 색 샘플 결정 (Selection of Color Smaples based on Genetic Algorithm for Color Correction)

  • 이규헌;김춘우
    • 전자공학회논문지S
    • /
    • 제34S권1호
    • /
    • pp.94-104
    • /
    • 1997
  • Most color imaging devices often exhibit color distortions due to the differences in realizable color gamuts and nonlinear characteristics of their components. In order to minimize color differences, it is desirable to apply color correction techniques. Th efirst step of color correction is to select the subset of the color coordinates representing the input color space. Th eselected subset serves as so called color samples to model the color distortion of a given color imaging device. The effectiveness of color correction is determined by the color sampels utilized in the modeling as well as the applied color correction technique. This paper presents a new selection method for color samples based on gentic algorithm. In the proposed method, structure of strings are designed so that the selected color samples fully represent the characteristics of color imaging device and consist of distinct color coordinates. To evaluate the performance of the selected color samples, they ar etuilized for three different color correction experiments. The experimentsal results are comapred with the crresponding results obtianed with the equally spaced color samples.

  • PDF

Optical Flow를 사용한 동영상의 흔들림 자동 평가 방법 (Automatic Jitter Evaluation Method from Video using Optical Flow)

  • 백상현;황원준
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1236-1247
    • /
    • 2017
  • In this paper, we propose a method for evaluating the uncomfortable shaking in the video. When you shoot a video using a handheld device, such as a smartphone, most of the video contains unwanted shake. Most of these fluctuations are caused by hand tremors that occurred during shooting, and many methods for correcting them automatically have been proposed. It is necessary to evaluate the shake correction performance in order to compare the proposed shake correction methods. However, since there is no standardized performance evaluation method, a correction performance evaluation method is proposed for each shake correction method. Therefore, it is difficult to make objective comparison of shake correction method. In this paper, we propose a method for objectively evaluating video shake. Automatically analyze the video to find out how much tremors are included in the video and how much the tremors are concentrated at a specific time. In order to measure the shaking index, we proposed jitter modeling. We applied the algorithm implemented by Optical Flow to the real video to automatically measure shaking frequency. Finally, we analyzed how the shaking indices appeared after applying three different image stabilization methods to nine sample videos.

BIM과 GIS 데이터 융합을 통한 실내외 3차원 모델 위치보정 방안 연구 ((A) study on location correction method of indoor/outdoor 3D model through data integration of BIM and GIS)

  • 김지은;홍창희
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.56-62
    • /
    • 2017
  • 최근 3차원 공간정보에 대한 수요가 증가하면서 국토교통부, 서울시, 다음 카카오 등 여러 지자체 및 관련 업계에서 서비스를 구축하여 제공하고 있다. 이러한 지도 기반의 3차원 공간정보서비스에서 위치정확도는 특정 업무의 활용 가능성을 결정짓는 중요한 요소이다. 기존의 BIM 데이터는 상대좌표값으로 작성되어 절대좌표값을 갖는 GIS 데이터와 연계하는데 어려움이 있었다. 따라서 본 연구는 BIM/GIS 플랫폼 기반 모델링 데이터 구축을 통해 실내외 3차원 공간정보 간의 위치보정 방안을 제시하였다. 이를 위하여 플랫폼 테스트베드 대상을 선정한 후 데이터 구축 프로세스를 총 3단계로 진행하고, 실내공간정보를 다루는 BIM 모델과 실감형 가시화를 위한 정사영상 기반 3차원 텍스처링 모델 간 위치 불일치의 문제점을 파악하여 위치보정 알고리즘을 설계하였다. 단일 건물을 대상으로 상대좌표 기반의 BIM 모델 데이터를 절대좌표 기반의 텍스처링 데이터와 연계하기 위해 절대좌표 변환 알고리즘을 구현하여 건물의 절대위치를 1차 계산하고 BIM/GIS 플랫폼 지도상에서 텍스처링 데이터와 2차 매핑하여 3차원 모델 데이터의 최종 위치를 보정하였다.