본 연구는 LDA 토픽 모델과 딥 러닝을 적용한 단어 임베딩 기반의 Doc2Vec 기법을 활용하여 자질을 선정하고 자질집합의 크기와 종류 및 분류 알고리즘에 따른 분류 성능의 차이를 평가하였다. 또한 자질집합의 적절한 크기를 확인하고 문헌의 위치에 따라 종류를 다르게 구성하여 분류에 이용할 때 높은 성능을 나타내는 자질집합이 무엇인지 확인하였다. 마지막으로 딥 러닝을 활용한 실험에서는 학습 횟수와 문맥 추론 정보의 유무에 따른 분류 성능을 비교하였다. 실험문헌집단은 PMC에서 제공하는 생의학 학술문헌을 수집하고 질병 범주 체계에 따라 구분하여 Disease-35083을 구축하였다. 연구를 통하여 가장 높은 성능을 나타낸 자질집합의 종류와 크기를 확인하고 학습 시간에 효율성을 나타냄으로써 자질로의 확장 가능성을 가지는 자질집합을 제시하였다. 또한 딥 러닝과 기존 방법 간의 차이점을 비교하고 분류 환경에 따라 적합한 방법을 제안하였다.
언어 모델은 음성 인식이나 필기체 문자 인식 등에서 다음 단어를 예측함으로써 인식률을 높이게 된다. 그러나 언어 모델은 그 도메인에 따라 모두 다르며 충분한 분량의 말뭉치를 수집하는 것이 거의 불가능하다. 본 논문에서는 N그램 방식의 언어모델을 구축함에 있어서 크기가 제한적인 말뭉치의 한계를 극복하기 위하여 두개의 말뭉치, 즉 소규모의 구어체 말뭉치와 대규모의 문어체 말뭉치의 통계를 이용하는 방법을 제시한다. 이 이론을 검증하기 위하여 수십만 단어 규모의 방송용 말뭉치에 수백만 이상의 신문 말뭉치를 결합하여 방송 스크립트에 대한 퍼플렉시티를 30% 향상시킨 결과를 획득하였다.
The purpose of this study is to investigate the effects of Oja-Shingiwhan(OS) in contracted corpus cavernosum smooth muscle and its mechanism. To evaluate the relaxation of OS in contracted corpus cavernosum, OS was treated in strips which were precontracted with phenylephrine(PE). To examine its mechanism, OS was treated into corporal strips contracted by PE after pretreatment of Nω-nitro-L-arginine(L-NNA) and compared with non-pretreatment of L-NNA. In calcium chloride(Ca2+)-free krebs solution, Ca2+ 1 mM was treated into corporal strips contracted by PE after pretreatment of OS and compared with non-pretreatment of OS. action were measured by histochemical, immunohistochemical methods. OS significantly affected on the relaxation of corporal strips, and the relaxation effects were inhibited by pretreatment of L-NNA. Contractions induced by Ca2+ influx were inhibited by pretreatment of OS in Ca2+-free krebs solution. OS increased eNOS positive reaction in corpus cavernosum, but decreased PDE-5 positive reaction. These result suggest that the effect of OS in contracted corpus cavernosum smooth muscle are shown by suppressing extracellular Ca2+ influx and increase of eNOS, NO production and decrease of PDE-5.
프로그램 내의 코드클론을 찾아주는 도구나 기술들을 평가하기 위해서는 해당 도구가 탐지하는 못하는 클론이 있는지 확인해야 한다. 이를 위해서 샘플 소스코드에 대해서 코드클론을 모두 모아놓은 표준 표본 집합체가 필요하다. 그런데 기존의 코드클론 표본 집합체는 여러 클론탐지 도구의 결과들을 참조해 수작업으로 구축하지만 평가 기준으로 사용하기에는 빠져있는 표본이 많다. 본 연구에서는 자동으로 코드클론 표본 집합체를 생성하는 방법을 제안하고 도구를 구현하였다. 이 도구는 프로그램 소스를 핵심구문트리로 변환한 뒤, 트리를 샅샅이 비교하여 클론 패턴을 찾아낸다. 본 도구는 오탐이 없으며, 특정한 패턴을 제외하고 미탐도 없어서 코드클론 표본 집합체를 자동으로 생성하기 적합하다. 실험결과 상용도구인 CloneDR에서 찾아낸 클론을 모두 포함하면서 2-3배 더 많은 클론들을 찾아내었고, Bellon의 기존 표본 집합체의 클론들을 거의 대부분 포함(93-100%)하면서 자동 구축한 표본 집합체의 크기가 훨씬 크다.
본 논문에서는 설계하지 않은 연속 음성 코퍼스로부터 추출된 CVC 음성 세그먼트를 사용하는 연결 기반 음성 합성기를 제안한다. 연속 음성은 각 음운간의 상호조음효과가 비교적 잘 반영되고, 자연스러운 억양 변화를 포함하고 있으므로 이를 적절하게 활용할 수 있는 합성 단위를 선택하면 자연스런 음성합성이 가능하다. 여러 가지 합성단위 가운데 CVC 합성 단위는 자음의 안정 부분에서 접속이 일어나므로 연결부에서의 음질 저하가 적고, 전후 자음과 모음간의 조음 현상을 잘 반영하는 장점이 있다. 본 논문에서는 CVC 합성 단위를 사용하는 경우 나타나는 문장 세그먼트들의 조합을 4가지로 분류하여 각각의 통계적 특성과 합성음성의 품질을 분석하고, CVC에 근거한 새로운 복합 합성 단위를 사용하는 방식을 제안한다. 제안된 방식을 사용하여 설계하지 않은 연속 음성 코퍼스로부터 CVC 음성 세그먼트를 추출하여 다양한 예제 문장을 합성하였다. 만일 필요한 CVC 음성 세그먼트가 음성 코퍼스에 존재하지 않는 경우 반음절 음성 세그먼트로 대치하여 합성하였다. 실험 결과 약 100 Mbytes의 연속 음성 코퍼스로 비교적 자연스러운 음성합성이 가능함을 알 수 있었다.
자살은 전 세계 사망 원인 중 4위이며 사회, 경제적 손실이 큰 난제이다. 본 연구는 자살 예방을 위하여 소셜미디어에 나타난 자살 관련 말뭉치를 구축하고 이를 통해 자살 경향 문헌을 분류할 수 있는 딥러닝 자동분류 모델을 만들고자 하였다. 또한, 자살 요인을 분석하기 위해 주제를 자동으로 추출하는 분석 기법인 토픽모델링을 활용하여 자살 관련 말뭉치를 세부 주제로 분류하고자 하였다. 이를 위해 소셜미디어 중 하나인 네이버 지식iN에 나타난 자살 관련 문헌 2,011개를 수집한 후 자살예방교육 매뉴얼을 기준으로 자살 경향 문헌 및 비경향 문헌 여부를 주석 처리하였으며, 이 데이터를 딥러닝 모델(LSTM, BERT, ELECTRA)로 학습시켜 자동분류 모델을 만들었다. 또한, 토픽모델링 기법의 하나인 LDA 기법으로 주제별 문헌을 분류하여 자살 요인을 발견하였고 이를 심층적으로 분석하기 위해 주제별로 동시출현 단어 분석 및 네트워크 시각화를 진행하였다.
본 논문은 기계 학습 기법 중에서 메모리 기반 학습을 사용하여 범용의 학습 가능한 한국어 문장 경계 인식기를 제안한다. 제안한 방법은 메모리 기반 학습 알고리즘 중 최근린 이웃(kNN) 알고리즘을 사용하였으며, 이웃들을 이용한 문장 경계 결정을 위한 스코어 값 계산을 위한 다양한 가중치 방법을 적용하여 이들을 비교 분석하였다 문장 경계 구분을 위한 자질로는 특정 언어나 장르에 제한적이지 않고 범용으로 적용될 수 있는 자질만을 사용하였다. 성능 실험을 위하여 ETRI 코퍼스와 KAIST 코퍼스를 사용하였으며, 성능 척도로는 정확도와 재현율이 사용되었다. 실험 결과 제안한 방법은 적은 학습 코퍼스만으로도 $98.82\%$의 문장 정확률과 $99.09\%$의 문장 재현율을 보였다.
This paper investigates the acoustic characteristics of English fricatives in the TIMIT corpus, with a special focus on the role of gender in rendering fricatives in American English. The TIMIT database includes 630 talkers and 2342 different sentences, comprising over five hours of speech. Acoustic analyses are conducted in the domain of spectral and temporal properties by treating gender as an independent factor. The results of acoustic analyses revealed that the most acoustic properties of voiceless sibilants turned out to be different between male and female speakers, but those of voiceless non-sibilants did not show differences. A classification experiment using linear discriminant analysis (LDA) revealed that 85.73% of voiceless fricatives are correctly classified. The sibilants are 88.61% correctly classified, whereas the non-sibilants are only 57.91% correctly classified. The majority of the errors are from the misclassification of /ɵ/ as [f]. The average accuracy of gender classification is 77.67%. Most of the inaccuracy results are from the classification of female speakers in non-sibilants. The results are accounted for by resorting to biological differences as well as macro-social factors. The paper contributes to the understanding of the role of gender in a large-scale speech corpus.
This paper investigated the phonological processes of monophthongs and diphthongs in the pronounced words present in the Buckeye Corpus and compared the frequency distribution of these processes by sex and age groups to provide a clearer understanding of spoken English to linguists and phoneticians. Both orthographic and pronounced words were extracted from the transcribed label scripts of the Buckeye Corpus using R. Next, the phonological processes of monophthongs and diphthongs in the orthographic and pronounced labels were tabulated using R scripts, and a frequency distribution by vowel process types, as well as sex and age groups, was created. The results revealed that 95% of the orthographic words contained the same number of syllables, whereas 5% had different numbers of vowels, thereby proving that speakers tend to preserve vowels in spontaneous speech. In addition, deletion processes were preferred in natural speech. Most vowel deletions occurred with an unstressed syllable. Chi-square tests were performed to calculate dependence in the distribution of phonological process types for male and female groups and young and old groups. The results showed a very strong correlation. This finding indicates that vowel processes occurred in approximately the same pattern in natural and spontaneous speech data regardless of sex and age, as well as whether or not the vowel processes were identical. Based on these results, the author concludes that an analysis of phonological processes in spontaneous speech corpora can greatly enhance practical understanding of spoken English.
This paper investigates the phonological processes of consonants in pronounced words in the Seoul Corpus, and compares the frequency distribution of these processes to provide a clearer understanding of conversational Korean to linguists and teachers. To this end, both orthographic and pronounced words were extracted from the transcribed label scripts of the Seoul Corpus. Next, the phonological processes of consonants in the orthographic and pronounced forms were tabulated separately after syllabifying the onsets and codas, and major consonantal processes were examined. First, the results showed that the majority of the orthographic consonants' sounds were pronounced the same way as their pronounced forms. Second, more than three quarters of the onsets were pronounced as the same forms, while approximately half of the codas were pronounced as variants. Third, the majority of different onset and coda symbols were primarily caused by deletions and insertions. Finally, the five phonological process types accounted for only 12.4% of the total possible procedures. Based on these results, this paper concludes that an analysis of phonological processes in spontaneous speech corpora can improve the practical understanding of spoken Korean. Future studies ought to compare the current phonological process data with those of other languages to establish universal patterns in phonological processes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.