This paper investigated -eullanjira sentence as a kind of construction of the Southwestern dialect in Korea. Five informants were selected to form the main corpus of -eullanjira. Through analyzing the corpus, its semantic, syntactic and morphological characteristics were figured out. Firstly, a view of construction grammar was adopted to capture the semantic and syntactic characteristics of -eullanjira. The construction of -eullanjira was established as "Xdo Yeullanjira Z". Syntactically, -do was found to be a common auxiliary particle, which allowed nouns, adverbs, verbs and adjectives to appear at the position of X, while only verbs and adjectives could appear at the position of Y. Subject-honorific, causative and passive prefinal endings could coexist with Y, while tense and modal prefinal endings could not. Z was an embedded clause, which had the semantic feature of [-DOUBT], meaning 'it should be done undoubtedly'. The formation of -eullanjira was next examined both diachronically and synchronically. It was found there was a conjuntive ending of Middle Korean, corresponding -eullanjira, namely, -landai. Finally, -eullanjira was newly analyzed as [[-eulla-]+[-n-ji-ra]].
In recent years, researchers have become increasingly interested in the creation and pedagogical use of English learner corpora. Many studies have shown that learner corpora can not only make a significant contribution to second language acquisition research but also contribute to the construction and evaluation of language tests by advancing our understanding of English learners. So far, however, little attention has been paid to the Korean EFL (English as a foreign language) learners' corpus. The Yonsei English Learner Corpus (YELC 2011) is a specialized, monolingual, and synchronic Korean EFL learner corpus that was developed by Yonsei University from 2011 to 2012. Over 3,000 Korean high school graduates (or equivalents) who were accepted by Yonsei University for their further studies participated in this project. It consists of 6,572 written texts (1,085,828 words) at nine different English proficiency levels. In this paper, we describe its compilation, and more specifically, how we have corpusized from a text archive to a corpus. After introducing the process of corpusization, we report arresting insights into the specific linguistic features that different proficiency levels of Korean learners of English have. This study also discusses the potential use of the YELC 2011 which is now freely available for research purposes.
Named entity recognition is a process which extracts named entities in sentences and determines categories of the named entities. Previous studies on named entity recognition have primarily been used for supervised learning. For supervised learning, a large training corpus manually annotated with named entity categories is needed, and it is a time-consuming and labor-intensive job to manually construct a large training corpus. We propose a semi-supervised learning method to minimize the cost needed for training corpus construction and to rapidly enhance the performance of named entity recognition. The proposed method uses distance supervision for the construction of the initial training corpus. It can then effectively remove noise sentences in the initial training corpus through the use of an active bagging method, an ensemble method of bagging and active learning. In the experiments, the proposed method improved the F1-score of named entity recognition from 67.36% to 76.42% after active bagging for 15 times.
The Journal of the Convergence on Culture Technology
/
v.8
no.5
/
pp.489-495
/
2022
It makes difference to LSTM D/L(Deep Learning) results for language model construction as the corpus preprocess changes. An LSTM model was trained with a famouse literaure poems(Ki Hyung-do's work) for training corpus in the study. You get the two wordvector sets for two corpus sets of the original text and eraised word ending text each once D/L training completed. It's been inspected of the similarity/analogy operation results, the positions of the wordvectors in 2D plane and the generated texts by the language models for the two different corpus sets. The suggested words by the silmilarity/analogy operations are changed for the corpus sets but they are related well considering the corpus characteristics as a literature work. The positions of the wordvectors are different for each corpus sets but the words sustained the basic meanings and the generated texts are different for each corpus sets also but they have the taste of the original style. It's supposed that the D/L language model can be a useful tool to enjoy the literature in object and in diverse with the analysis results shown in the study.
English inversion constructions are not only hard for non-native speakers to learn but also difficult to teach mainly because of their intriguing grammatical and discourse properties. This paper addresses grammatical issues in learning or teaching the so-called 'predicate inversion (PI)' construction (e.g., Equally important in terms of forest depletion is the continuous logging of the forests). In particular, we chart the grammatical (distributional, syntactic, semantic, pragmatic) properties of the PI construction, and argue for adata-driven teaching for English grammar. To depart from the arm-chaired style of grammar teaching (relying on author-made simple sentences), our teaching method introduces a datadriven teaching. With total 25 university students in a grammar-related class, students together have analyzed the British Component of the International Corpus of English (ICE-GB), containing about one million words distributed across a variety of textual categories. We have identified total 290 PI sentences (206 from spoken and 87 from written texts). The preposed syntactic categories of the PI involve five main types: AdvP, PP, VP(ed/ing), NP, AP, and so, all of which function as the complement of the copula. In terms of discourse, we have observed, supporting Birner and Ward's (1998) observation that these preposed phrases represent more familiar information than the postposed subject. The corpus examples gave us the three possible types: The preposed element is discourse-old whereas the postposed one is discourse-new as in Putting wire mesh over a few bricks is a good idea. Both preposed and postposed elements can also be discourse new as in But a fly in the ointment is inflation. These two elements can also be discourse old as in Racing with him on the near-side is Rinus. The dominant occurrence of the PI in the spoken texts also supports the view that the balance (or scene-setting) in information structure is the main trigger for the use of the PI construction. After being exposed to the real data and in-depth syntactic as well as informationstructure analysis of the PI construction, it is proved that the class students have had a farmore clear understanding of the construction in question and have realized that grammar does not mean to live on by itself but tightly interacts with other important grammatical components such as information structure. The study directs us toward both a datadriven and interactive grammar teaching.
Jeong-Uk Bang;Joon-Gyu Maeng;Jun Park;Seung Yun;Sang-Hun Kim
ETRI Journal
/
v.45
no.1
/
pp.18-27
/
2023
We present an English-Korean speech translation corpus, named EnKoST-C. End-to-end model training for speech translation tasks often suffers from a lack of parallel data, such as speech data in the source language and equivalent text data in the target language. Most available public speech translation corpora were developed for European languages, and there is currently no public corpus for English-Korean end-to-end speech translation. Thus, we created an EnKoST-C centered on TED Talks. In this process, we enhance the sentence alignment approach using the subtitle time information and bilingual sentence embedding information. As a result, we built a 559-h English-Korean speech translation corpus. The proposed sentence alignment approach showed excellent performance of 0.96 f-measure score. We also show the baseline performance of an English-Korean speech translation model trained with EnKoST-C. The EnKoST-C is freely available on a Korean government open data hub site.
In a mobile environment, communication takes place via SMS text messages. Vocabularies used in SMS texts can be expected to use vocabularies of different classes from those used in general Korean literary style sentence. For example, in the case of a typical literary style, the sentence is correctly initiated or terminated and the sentence is well constructed, while SMS text corpus often replaces the component with an omission and a brief representation. To analyze these vocabulary usage characteristics, the existing colloquial style corpus and the literary style corpus are used. The experiment compares and analyzes the vocabulary use characteristics of the colloquial corpus SMS text corpus and the Naver Sentiment Movie Corpus, and the written Korean written corpus. For the comparison and analysis of vocabulary for each corpus, the part of speech tag adjective (VA) was used as a standard, and a distinctive collexeme analysis method was used to measure collostructural strength. As a result, it was confirmed that adjectives related to emotional expression such as'good-','sorry-', and'joy-' were preferred in the SMS text corpus, while adjectives related to evaluation expressions were preferred in the Naver Sentiment Movie Corpus. The word embedding was used to automatically construct a sentiment lexicon based on the extracted adjectives with high collostructural strength, and a total of 343,603 sentiment representations were automatically built.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.10a
/
pp.675-676
/
2010
As the number of documents rapidly increases in the web environment, the efficient document classification approaches have been required to retrieve the desired information from too many documents. In this paper, we propose a corpus construction tool to annotate document classification information such as category, keywords, and usage to each product description document. The proposed tool can help a human annotator to correctly identify this information by providing the verification step to check the input results of other human annotators. Also, the human annotator can construct the corpus anytime anywhere by using the web-based proposed system.
With the rapid evolution of the Internet and mobile environments, text including spelling errors such as newly-coined words and abbreviated words are widely used. These spelling errors make it difficult to develop NLP (natural language processing) applications because they decrease the readability of texts. To resolve this problem, we propose a spelling error correction model using a spelling error correction dictionary and a newspaper corpus. The proposed model has the advantage that the cost of data construction are not high because it uses a newspaper corpus, which we can easily obtain, as a training corpus. In addition, the proposed model has an advantage that additional external modules such as a morphological analyzer and a word-spacing error correction system are not required because it uses a simple string matching method based on a correction dictionary. In the experiments with a newspaper corpus and a short message corpus collected from real mobile phones, the proposed model has been shown good performances (a miss-correction rate of 7.3%, a F1-measure of 97.3%, and a false positive rate of 1.1%) in the various evaluation measures.
Park, Eun-Jin;Kim, Jae-Hoon;Kim, Chang-Hyun;Kim, Young-Kill
Proceedings of the Korean Society for Language and Information Conference
/
2007.11a
/
pp.385-393
/
2007
Corpora annotated with lots of linguistic information are required to develop robust and statistical natural language processing systems. Building such corpora, however, is an expensive, labor-intensive, and time-consuming work. To help the work, we design and implement an annotation tool for establishing a Korean dependency tree-tagged corpus. Compared with other annotation tools, our tool is characterized by the following features: independence of applications, localization of errors, powerful error checking, instant annotated information sharing, user-friendly. Using our tool, we have annotated 100,904 Korean sentences with dependency structures. The number of annotators is 33, the average annotation time is about 4 minutes per sentence, and the total period of the annotation is 5 months. We are confident that we can have accurate and consistent annotations as well as reduced labor and time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.