• Title/Summary/Keyword: Coronary physiology

Search Result 87, Processing Time 0.022 seconds

Effects of Nelumbinis Semen on Contractile Dysfunction in Ischemic and Reperfused Rat Heart

  • Kim, Jong-Hoon;Kang, Moon-Kyu;Cho, Chong-Woon;Chung, Hwan-Suck;Kang, Chang-Woon;Parvez, Shoukat;Bae, Hyun-Su
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.777-785
    • /
    • 2006
  • Nelumbinis Semen (NS), or lotus seed, is one of the most well-known traditional herbal medicines and is frequently used to treat cardiovascular symptoms in Korea. The anti-ischemic effects of NS on ischemia-induced isolated rat heart were investigated through analyses of changes in blood pressure, aortic flow, coronary flow, and cardiac output. The subjects in this study were divided into two groups: a control, untreated ischemia-induced group, and an ischemia-induced group treated with NS. There were no significant differences in perfusion pressure, aortic flow, coronary flow and cardiac output between the groups before ischemia was induced. The supply of oxygen and buffer was stopped for ten minutes to induce ischemia in isolated rat hearts, and NS was administered during ischemia induction. NS treatment significantly prevented decreases in perfusion pressure, aortic flow, coronary flow and cardiac output under ischemic conditions (p<0.01). In addition, the mechanism of the anti-ischemic effects of NS was also examined through quantitation of intracellular calcium content in rat neonatal cardiomyocytes. NS significantly prevented intracellular calcium increases induced by isoproterenol (p<0.01). These results suggest that NS has distinct anti-ischemic effects through calcium antagonism.

In silico evaluation of the acute occlusion effect of coronary artery on cardiac electrophysiology and the body surface potential map

  • Ryu, Ah-Jin;Lee, Kyung Eun;Kwon, Soon-Sung;Shin, Eun-Seok;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • Body surface potential map, an electric potential distribution on the body torso surface, enables us to infer the electrical activities of the heart. Therefore, observing electric potential projected to the torso surface can be highly useful for diagnosing heart diseases such as coronary occlusion. The BSPM for the heart of a patient show a higher level of sensitivity than 12-lead ECG. Relevant research has been mostly based on clinical statistics obtained from patients, and, therefore, a simulation for a variety of pathological phenomena of the heart is required. In this study, by using computer simulation, a body surface potential map was implemented according to various occlusion locations (distal, mid, proximal occlusion) in the left anterior descending coronary artery. Electrophysiological characteristics of the body surface during the ST segment period were observed and analyzed based on an ST isointegral map. We developed an integrated system that takes into account the cellular to organ levels, and performed simulation regarding the electrophysiological phenomena of the heart that occur during the first 5 minutes (stage 1) and 10 minutes (stage 2) after commencement of coronary occlusion. Subsequently, we calculated the bipolar angle and amplitude of the ST isointegral map, and observed the correlation between the relevant characteristics and the location of coronary occlusion. In the result, in the ventricle model during the stage 1, a wider area of ischemia led to counterclockwise rotation of the bipolar angle; and, during the stage 2, the amplitude increased when the ischemia area exceeded a certain size.

Effects of sleep deprivation on coronary heart disease

  • Wei, Ran;Duan, Xiaoye;Guo, Lixin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.297-305
    • /
    • 2022
  • The presence of artificial light enables humans to be active 24 h a day. Many people across the globe live in a social culture that encourages staying up late to meet the demands of various activities, such as work and school. Sleep deprivation (SD) is a severe health problem in modern society. Meanwhile, as with cardiometabolic disease, there was an obvious tendency that coronary heart disease (CHD) to become a global epidemic chronic disease. Specifically, SD can significantly increase the morbidity and mortality of CHD. However, the underlying mechanisms responsible for the effects of SD on CHD are multilayered and complex. Inflammatory response, lipid metabolism, oxidative stress, and endothelial function all contribute to cardiovascular lesions. In this review, the effects of SD on CHD development are summarized, and SD-related pathogenesis of coronary artery lesions is discussed. In general, early assessment of SD played a vital role in preventing the harmful consequences of CHD.

Differential Modulation of Exogenous and Endogenous Adenosine-induced Coronary Vasodilation by Dipyridamole

  • Kim, Young-Hoon;Kim, Chan-Hyung;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.423-431
    • /
    • 2001
  • Some recent investigations revealed that vasodilatory action of adenosine is mainly not mediated by surface A2 receptor and suggested the existence of an intracellular action site. In the present study, we tried to differentiate intracellular from extracellular site of adenosine action in the regulation of coronary flow. In perfused rabbit hearts, concentration-response curve of coronary flow to exogenous adenosine was constructed in the presence or absence of dipyridamole, an inhibitor of transmembrane purine transport. Inhibition of cellular adenosine uptake by dipyridamole suppressed the increase of flow rate while enhancing the decrease in heart rate induced by exogenous adenosine. In another series of experiments, perfused rabbit hearts were subjected to energy deprivation in order to increase the production of endogenous adenosine. Energy deprivation along with dipyridamole administration resulted in higher coronary flow rate. Lower perfusate adenosine concentration was observed along with higher tissue adenosine content in this group. These results implied that coronary flow rate is determined not by interstitial adenosine concentration but by intracellular activity of adenosine. To confirm the effects of dypiridamole in vivo, direct measurement of interstitial adenosine concentration by mycrodialysis along with the assay of intracellular adenosine content was performed after intranenous dipyridamole administration. After dipyridamole infusion, intracellular adenosine content was markedly increased while interstitial adenosine concentration was not altered. In another series of experiments, the right shift of concentration-response curve of adenosine-induced vasodilation by 8-phenyltheophilline, a representative adenosine receptor antagonist, was mostly abolished by prior administration of prazosin, indicating that the influence of 8-PT on the adenosine action is not attributed to the inhibition of A2 receptor but related to the suppression of ${\alpha}-adrenoceptor$ activation. From these results, we concluded that adenosine acts intracellularly to regulate the coronary blood flow.

  • PDF

Actin Filaments Regulate the Stretch Sensitivity of Large Conductance $Ca^{2+}$-Activated $K^+$ Channel in Rabbit Coronary Arterial Smooth Muscle Cells

  • Lin Piao;Earm, Yung-E;Wonkyung Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.35-35
    • /
    • 2002
  • The large conductance $Ca^{2+}$ -activated $K^{+}$ channels ($BK_{Ca}$) in vascular smooth muscle have been considered to function as a negative feedback in pressure-induced vasoconstriction. In the present study, the function of cytoskeletons in the regulation of $BK_{Ca}$ and its stretch sensitivity was investigated. Using the inside-out patch clamp technique, we recorded single channel activities of $BK_{Ca}$ with 150 mM KCl in the bath solution (pCa=6.5).(omitted)itted)

  • PDF

Effects of the Fractionation of Sophorae Radix Water Extract on the Langendorff hearts (고삼 유기용매 분획층이 적출 심장에 미치는 영향)

  • Kim Sang Beam;Kwon Kang Beam;Park Jun Su;Park Gwan Ha;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.160-164
    • /
    • 2002
  • The water extract of Sophorae radix was tested for its preventive effects against cardiovascular anaphylaxis elicited in experimental animals. H₂O and ethyl acetate fractionation of Sophorae radix water extract improved anaphylactic cardiac dysfunction in passively sensitized isolated guinea hearts: improvement was noted in the maximal contractile force, post-challenge contractile force, post-challenge coronary flow and creatine kinase change elevation. These results suggest that H₂O and ethyl acute fractionation of Sophorae radix water extract possesses anti-anaphylactic effect in cardiovascular system.

Degradation of Bradykinin, a Cardioprotective Substance, during a Single Passage through Isolated Rat-Heart

  • Ahmad M.;Zeitlin I.J.;Parratt J.R.;Pitt A.R.
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.241-248
    • /
    • 2006
  • Angiotensin converting enzyme (ACE) inhibitors have cardioprotective effects in different species including human. This cardioprotective effect is mainly due to the inhibition of bradykinin (BK) degradation rather than inhibition of the conversion of angiotensin I to angiotensir. II. Bradykinin, a nonapeptide, has been considered to be the potential target for various enzymes including ACE, neutral endopeptidase 24.11, carboxypeptidase M, carboxypeptidase N, proline aminopeptidase, endopeptidase 24.15, and meprin. In the present study, the coronary vascular beds of Sprague Dawley rat isolated hearts were perfused (single passage) with Krebs solution alone or with different concentrations of BK i.e. $2.75{\times}10^{-10},\;10^{-7},\;10^{-6}\;and\;10^{-5}M$ solution. Percent degradation of BK was determined by radioimmunoassay. The degradation products of BK after passing through the isolated rat-hearts were determined using RP-HPLC and mass spectroscopy. All the four doses of BK significantly decreased the perfusion pressure during their passage through the hearts. The percentage degradation of all four doses was decreased as the concentration of drug was increased, implying saturation of a fixed number of active sites involved in BK degradation. Bradykinin during a single passage through the hearts degraded to give [1-7]-BK as the major metabolite, and [1-8]-BK as a minor metabolite, detected on HPLC. Mass spectroscopy not only confirmed the presence of these two metabolites but also detected traces of [1-5]-BK and arginine. These findings showed that primarily ACE is the major cardiac enzyme involved in the degradation of bradykinin during a single passage through the coronary vascular of bed the healthy rat heart, while carboxypeptidase M may have a minor role.

Characterization of hypotensive and vasorelaxant effects of PHAR-DBH-Me a new cannabinoid receptor agonist

  • Lopez-Canales, Oscar Alberto;Pavon, Natalia;Ubaldo-Reyes, Laura Matilde;Juarez-Oropeza, Marco Antonio;Torres-Duran, Patricia Victoria;Regla, Ignacio;Paredes-Carbajal, Maria Cristina
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.77-86
    • /
    • 2022
  • The effect of PHAR-DBH-Me, a cannabinoid receptor agonist, on different cardiovascular responses in adult male rats was analyzed. The blood pressure was measured directly and indirectly. The coronary flow was measured by Langendorff preparation, and vasomotor responses induced by PHAR-DBH-Me in aortic rings precontracted with phenylephrine (PHEN) were analyzed. The intravenous injection of the compound PHAR-DBH-Me (0.018-185 ㎍/kg) resulted in decreased blood pressure; maximum effect was observed at the dose of 1,850 ㎍/kg. A concentrationdependent increase in the coronary flow was observed in a Langendorff preparation. In the aortic rings, with and without endothelium, pre-contracted with PHEN (10-6 M), the addition of PHAR-DBH-Me to the superfusion solution (10-12-10-5 M), produced a vasodilator response, which depends on the concentration and presence of the endothelium. L-NAME inhibited these effects. Addition of CB1 receptor antagonist (AM 251) did not modify the response, while CB2 receptor antagonist (AM630) decreased the potency of relaxation elicited by PHAR-DBH-Me. Indomethacin shifted the curve concentration-response to the left and produced an increase in the magnitude of the maximum endothelium dependent response to this compound. The maximum effect of PHAR-DBH-Me was observed with the concentration of 10-5 M. These results show that PHAR-DBH-Me has a concentration-dependent and endothelium-dependent vasodilator effect through CB2 receptor. This vasodilation is probably mediated by the synthesis/release of NO. On the other hand, it is suggested that PHAR-DBH-Me also induces the release of a vasoconstrictor prostanoid.

Differentially expressed mRNAs and their upstream miR-491-5p in patients with coronary atherosclerosis as well as the function of miR-491-5p in vascular smooth muscle cells

  • Ding, Hui;Pan, Quanhua;Qian, Long;Hu, Chuanxian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.183-193
    • /
    • 2022
  • MicroRNAs (miRNAs) regulate gene expression and are biomarkers for coronary atherosclerosis (AS). A novel miRNA-mRNA regulation network of coronary AS still needs to be disclosed. The aim of this study was to analyze potential mRNAs in coronary AS patients and the role of their upstream miR-491-5p in vascular smooth muscle cells (VSMCs). We first confirmed top ten mRNAs according to the analysis from Gene Expression Omnibus database (GSE132651) and examined the expression levels of them in the plaques and serum from AS patients. Five mRNAs (UBE2G2, SLC16A3, POLR2C, PNO1, and AMDHD2) presented significantly abnormal expression in both plaques and serum from AS patients, compared with that in the control groups. Subsequently, they were predicted to be targeted by 11 miRNAs by bioinformatics analysis. Among all the potential upstream miRNAs, only miR-491-5p was abnormally expressed in the plaques and serum from AS patients. Notably, miR-491-5p overexpression inhibited viability and migration, and significantly increased the expression of contractile markers (α-SMA, calponin, SM22α, and smoothelin) in VSMCs. While silencing miR-491-5p promoted viability and migration, and significantly suppressed the expression of α-SMA, calponin, SM22α, and smoothelin. Overall, miR-491-5p targeted UBE2G2, SLC16A3, and PNO1 and regulated the dysfunctions in VSMCs.

Myocardial Protection of Contractile Function After Global Ischemia by Compound K in the Isolated Heart

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.268-277
    • /
    • 2009
  • Ginsenosides are among the most well-known traditional herbal medicines frequently used for the treatment of cardiovascular symptoms in South Korea. The anti-ischemic effects of compound K (CK), a metabolite of ginsenoside Rb1, on ischemia-induced isolated rat hearts were investigated through the analyses of the changes in the hemodynamics (blood pressure, aortic flow, coronary flow, and cardiac output) and the measurement of the infarct region. The subjects in this study were divided into four groups: the normal control, the CK-alone group, the ischemia-induced group without any treatment, and the ischemia-induced group treated with CK. No significant differences in perfusion pressure, aortic flow, coronary flow, and cardiac output were found between the groups before ischemia was induced. The oxygen and buffer supply was stopped for 30 min to induce ischemia 60 min after reperfusion in the isolated rat hearts, and the CK was administered 5 min before ischemia induction. The CK treatment significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output under ischemic conditions. In addition, the hemodynamics (except for the heart rate) of the group treated with CK significantly recovered 60 min after reperfusion, unlike in the control group. CK significantly limited the infarct. These results suggest that CK treatment has distinct anti-ischemic effects in an exvivo model of an ischemia-reperfusion-induced rat heart.