• Title/Summary/Keyword: Coronary physiology

Search Result 87, Processing Time 0.022 seconds

Effect of Preconditioning Ischemia on Endothelial Dysfunction Produced by Ischemia-Reperfusion in Rabbit Coronary Artery

  • Suh, Suk-Hyo;Park, Yee-Tae;Kim, Woong-Heum;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.51-59
    • /
    • 1995
  • This study was designed to test whether or not 1) ischemia-reperfusion attenuates endothelium-dependent relaxation of coronary arteries and 2) preconditioning protects the arterial endothelium from ischemia-reperfusion injury. In anesthetized open chest rabbits, branches of the left circumflex artery were exposed to different combinations of the experimental conditions; ischemia (15 minutes), ischemia (15 minutes)-reperfusion (10 minutes), preconditioning ischemia, and pre-conditioning fellowed by ischemia-reperfusion. Preconditioning consisted of 3 occlusions of 2-min duration, each followed by n 5-min reperfusion. Rings of the artery exposed to the experimental condition and of normal left anterior descending coronary artery were prepared and suspended for isometric force measurement in organ chambers containing Krebs Ringer bicarbonate solution. The rings were contracted with 29.6 mM KCI. Ischemia alone did not attenuate endothelium-dependent relaxation by acetylcholine. However, ischemia-reperfusion significantly impaired endothelium-dependent relaxation. Endothelium-independent relaxation by sodium nitroprusside was not impaired by ischemia-reperfusion and the constrictive response to acetylcholine was not altered in reperfused rings without endothelium, compared with control rings. Arterial rings exposed to preconditioning followed by ischemia-reperfusion exhibited impaired endothelium-dependent relaxation by acetyl-choline. However, although preconditioning not fellowed by ischemia-reperfusion, attenuated endothelium-dependent relaxation at low concentrations of acetylcholine, the magnitude of the impairment by preconditioning followed by ischemia-reperfusion was significantly less than that of the impairment by ischemia-reperfusion alone. These data demonstrate that ischemia-reperfusion significantly attenuates endothelium-dependent relaxation by producing endothelial dysfunction and preconditioning Protects the endothelium of coronary arteries from ischemia-reperfusion injury.

  • PDF

Anti-ischemic Effect of Polygala Tenuifolia in Isolated Rat Heart

  • Kang, Chang-Won;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.89-95
    • /
    • 2007
  • Polygala tenuifolia (PT) is one of the most well-known traditional herbal medicines in Korea which is commonly used for the treatment of cardiovascular symptoms. The anti-ischemic effects of PT in isolated rat heart was investigated by analyzing changes in blood pressure, aortic flow, coronary flow, and cardiac output. And, its underlying mechanism was examined by quantitating intracellular calcium content in rat neonatal cardiomyocytes. Rats were divided into two groups: an ischemia-induced group without any treatment, and an ischemia-induced group treated with PT. Ischemia of isolated heart was induced by stopping the supply of oxygen and buffer for 10 min. The isolated heart was exposed to PT for the first 5 min of 10 min ischemia. PT treatment significantly prevented the decreases of perfusion pressure, aortic flow, coronary flow, and cardiac output under ischemic conditions. In addition, hemodynamics (except heart rate) of the PT-treated group was significantly recovered 60 min after reperfusion compared to the control group (systolic aortic pressure: 83.3% vs. 64.9%, aortic flow volume: 69.5% vs. 48.7%, coronary flow volume: 77.7% vs. 58.4%, and cardiac output: 71.6% vs. 51.2%, p < 0.01). As for the underlying mechanism, PT significantly prevented intracellular calcium increase which was induced by isoproterenol (p < 0.01), suggesting that the anti-ischemic effect of PT is mediated by inhibition of intracellular calcium increase.

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun;Yin, Ming Zhe;Kim, Hae Jin;Vorn, Rany;Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.111-119
    • /
    • 2020
  • In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.

Red Ginseng Saponin Fraction A Isolated from Korean Red Ginseng by Ultrafiltration on the Porcine Coronary Artery

  • Jung, Young-Hyun;Park, Kwang-Yeol;Jeon, Jin-Hong;Kwak, Yi-Seong;Song, Yong-Bum;Wee, Jae-Joon;Rhee, Man-Hee;Kim, Tae-Wan
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.325-330
    • /
    • 2011
  • Red ginseng saponin fraction-A (RGSF-A) contains a high percentage of panaxadiol saponins that were isolated from Korean red ginseng by ultrafiltration. The aim of this study was to elucidate the effects of RGSF-A on the porcine distal left anterior descending (LAD) coronary artery. The relaxant responses to RGSF-A were examined during contractions induced by 100 nM U46619 (9,11-dideoxy-9a,11a-methanoepoxy-prostaglandin F2a), a stable analogue of thromboxane A2. RGSF-A dose-dependently induced biphasic (fast- and slow-) relaxation in the distal LAD coronary artery in the presence of an intact endothelium. The fast-relaxation was quickly achieved in a minute, and then the slow-relaxation was slowly developed and sustained for more than thirty minutes after the administration of RGSF-A. The slow-relaxation had a tendency to be bigger than the fast-relaxation. Fast relaxation induced by RGSF-A was almost blocked by $N_{\omega}$-Nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase synthase inhibitor and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor. However slow relaxation induced by RGSF-A was only partially inhibited by L-NAME and ODQ. In the endothelium-removed ring, RGSF-A evoked only slowrelaxation to a certain extent. These data suggest that RGSF-A induced both endothelium dependent fast- and slow-relaxation and endothelium independent slow-relaxation in the porcine distal LAD coronary artery. The endothelium dependent fast-relaxation is mediated by the nitric oxide (NO)-cGMP pathway, and the endothelium dependent slow-relaxation is at least partially mediated by the NO-cGMP pathway. However, the endothelium-independent slow-relaxation remains to be elucidated.

Role of Endogenous Nitric Oxide in the Vasorelaxation Induced by High Calcium Environment in vitro

  • Lee, Jong-Eun;Lee, Byung-Kook;Ahn, Hyun-Taek;Ahn, Byoung-Hee;Kang, Jung-Chaee
    • The Korean Journal of Physiology
    • /
    • v.26 no.2
    • /
    • pp.123-128
    • /
    • 1992
  • The present study was undertaken to examine if endogenous nitric oxide is partly responsible for the high calcium induced vasorelaxation in vitro. Isolated porcine coronary arterial rings were suspended in the tissue chamber and their changes in isometric tension were recorded. KCI little affected the vascular tension in the calcium free media, but subsequent addition of cumulative doses of $CaCl_3$ from 1 to 40 mM caused a contraction followed by complete relaxation. The maximum tension was noted at the calcium concentration in the media of 5 mM, and then the tension progressively declined at 10-40 mM. The relaxation was slightly attenuated in the endothelium-denuded preparation. The relaxation was converted into a contraction by the addition of methylene blue. The relaxation response was not affected in the presence of indomethacin, but was significantly attenuated by $N^w-nitro-L-arginine$ methyl ester pretreatment. These results suggest that the calcium induced vasorelaxation is in part attributable to the release of endogenous nitric oxide.

  • PDF

Encainide, a class Ic anti-arrhythmic agent, blocks voltage-dependent potassium channels in coronary artery smooth muscle cells

  • Hongliang Li;Yue Zhou;Yongqi Yang;Yiwen Zha;Bingqian Ye;Seo-Yeong Mun;Wenwen Zhuang;Jingyan Liang;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.399-406
    • /
    • 2023
  • Voltage-dependent K+ (Kv) channels are widely expressed on vascular smooth muscle cells and regulate vascular tone. Here, we explored the inhibitory effect of encainide, a class Ic anti-arrhythmic agent, on Kv channels of vascular smooth muscle from rabbit coronary arteries. Encainide inhibited Kv channels in a concentration-dependent manner with an IC50 value of 8.91 ± 1.75 μM and Hill coefficient of 0.72 ± 0.06. The application of encainide shifted the activation curve toward a more positive potential without modifying the inactivation curve, suggesting that encainide inhibited Kv channels by altering the gating property of channel activation. The inhibition by encainide was not significantly affected by train pulses (1 and 2 Hz), indicating that the inhibition is not use (state)-dependent. The inhibitory effect of encainide was reduced by pretreatment with the Kv1.5 subtype inhibitor. However, pretreatment with the Kv2.1 subtype inhibitor did not alter the inhibitory effects of encainide on Kv currents. Based on these results, encainide inhibits vascular Kv channels in a concentration-dependent and use (state)-independent manner by altering the voltage sensor of the channels. Furthermore, Kv1.5 is the main Kv subtype involved in the effect of encainide.

Myogenic Autoregulation of Coronary Vessels and Heterometric Autoregulation of the Myocardium

  • Doring, H.J.;Schlicht, I.;Hiller, V.;Jiang, X.R.
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.225-236
    • /
    • 1989
  • 1) At the isolated perfused guinea-pig and rat heart heterometric autoregulation of the myocardium and myogenic autoregulation of the coronary vessels were induced by means of stepwise increases of perfusion pressure. 2) According to this loading test Frank-Starling function curves of the left ventricle and pressure-flow curves of the coronary vessels can be drawn. This graphic evaluation gives more information about the condition of the heart and the coronary vessels than simple evaluation under hemodynamic equilibrium. 3) There are significant differences in both curves between animal species and between different perfusate Mg concentration. 4) Myogenic autoregulation is not affected by the cyclooxygenase inhibitors indometacin and me- clofenamate. Thus it appears unlikely that prostanoides are involved in myogenic autoregulation. 5) Ca antagonists (Gallopamil, prenylamine) depress myogenic autoregulation dose-dependently. Enhanced myogenic autoregulation, induced by low extracellular magnesium, can be reduced effectively by Gallopamil. 6) Ginsenosides from Panax ginseng as well as the ginsenoside 'Rg' are effective inhibitors of myogenic autoregulation without major negative inotropic effects.

  • PDF

Inhibitory effects of the atypical antipsychotic, clozapine, on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells

  • Kang, Minji;Heo, Ryeon;Park, Seojin;Mun, Seo-Yeong;Park, Minju;Han, Eun-Taek;Han, Jin-Hee;Chun, Wanjoo;Ha, Kwon-Soo;Park, Hongzoo;Jung, Won-Kyo;Choi, Il-Whan;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.277-285
    • /
    • 2022
  • To investigate the adverse effects of clozapine on cardiovascular ion channels, we examined the inhibitory effect of clozapine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Clozapine-induced inhibition of Kv channels occurred in a concentration-dependent manner with an half-inhibitory concentration value of 7.84 ± 4.86 µM and a Hill coefficient of 0.47 ± 0.06. Clozapine did not shift the steady-state activation or inactivation curves, suggesting that it inhibited Kv channels regardless of gating properties. Application of train pulses (1 and 2 Hz) progressively augmented the clozapine-induced inhibition of Kv channels in the presence of the drug. Furthermore, the recovery time constant from inactivation was increased in the presence of clozapine, suggesting that clozapine-induced inhibition of Kv channels is use (state)-dependent. Pretreatment of a Kv1.5 subtype inhibitor decreased the Kv current amplitudes, but additional application of clozapine did not further inhibit the Kv current. Pretreatment with Kv2.1 or Kv7 subtype inhibitors partially blocked the inhibitory effect of clozapine. Based on these results, we conclude that clozapine inhibits arterial Kv channels in a concentration-and use (state)-dependent manner. Kv1.5 is the major subtype involved in clozapine-induced inhibition of Kv channels, and Kv2.1 and Kv7 subtypes are partially involved.