• Title/Summary/Keyword: Corona discharge electrode

Search Result 145, Processing Time 0.02 seconds

Corona Discharge and Ozone Generation Characteristics of a Slit Dielectric Barrier Discharge Type Plasma Reactor with a Third Electrode (3전극이 부설된 틈새 장벽방전형 플라즈마장치의 코로나 방전 및 오존발생 특성)

  • Moon, Jae-Duk;Jung, Jae-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.583-587
    • /
    • 2007
  • Corona discharge and ozone generation characteristics of a slit dielectric barrier discharge type wire-plate plasma reactor with a third electrode have been investigated. When a third electrode is installed on a slit of the slit barrier, where an intense corona discharge occurs, it is found that a significantly increased ozone output could be obtained. This, however, indicates that the third electrode can activate the corona discharges both of the discharge wire and the slit of the slit barrier in the plasma reactor. As a result, a thin stainless wire, used as the third electrode has a strong effect to influence the corona discharge of the slit and corona wire, especially to the negative corona discharge. Higher amounts of the output ozone and ozone yield, about 1.27 and 1.29 times for the negative corona discharge, can be obtained with the third electrode, which reveals the effectiveness of the third electrode.

Effective Ionic Wind Generation Utilizing a Cylindrical Corona Discharge Electrode (금속관형 코로나 방전극을 적용한 효과적인 이온풍 발생)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.599-603
    • /
    • 2010
  • A point-mesh type corona system has been well used as a ionic wind blower. However this type corona system suffers from its lower ionic wind generation, because of its lower on-set and breakdown voltages of its very sharp needle point corona electrode. This means that the point corona electrode must act both as an effective ion-generator and a very higher electric field producer in the discharge airgap in order to generate higher ionic wind velocity. In this paper, a cylinder-mesh type discharge system as a ionic wind generator is proposed and investigated. The cylindrical corona electrode can produce many ions from its sharpened edge, and the corona on-set and breakdown voltages are very higher than those of the needle point corona electrode. As a result, this type cylindrical corona electrode might generate a higher ionic wind than the needle point corona electrode.

An Maximization of Ionic Wind Utilizing a Cylindrical Corona Electrode (관형 코로나 방전전극을 이용한 이온풍속의 최대화)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2256-2261
    • /
    • 2010
  • A corona discharge system with needle point or wire type corona electrode has been well used as an ionic wind blower. The corona discharge system with a needle point electrode produces ions at lower applied voltage effectively. However, the corona discharge on the needle point electrode transits to the arc discharge at lower voltage, and it is hard to obtain the elevated electric field in the discharge airgap for enhancing the ion migration velocity due to the weak Coulomb force. A cylindrical corona electrode with sharp round tip is reported as one of effective corona electrode, because of its higher breakdown voltage than that of the needle electrode. A basic study, for the effectiveness of cylindrical electrode shape on the ionic wind generation, has been investigated to obtain an maximum wind velocity, which however is the final goal for the real field application of this kind ionic wind blower. In this paper, a parametric study for maximizing the ionic wind velocity utilizing the cylindrical corona electrode and a maximum ion wind velocity of 4.1 m/s were obtained, which is about 1.8 times higher than that of 2.3m/s obtained with the needle corona electrode from the velocity profile.

Electrohydrodynamic Characteristics of AC Corona Discharge for the Frequency (교류 코로나 방전시 주파수 변화에 따른 전기유체역학적 특성)

  • Jung, Jae-Seung;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.87-92
    • /
    • 2012
  • In this paper, EHD(electrohydrodynamics) characteristics of AC corona discharge for the various frequency was investigated. Ionic wind velocity is controlled by the frequency of applied ac high voltage, and maximum velocity of the ionic wind is obtained at 1.2kHz. Maximum velocity are 1.90 m/s by metal corona electrode and 2.72m/s by wet porous corona electrode, These attain 91~99% of the maximum velocity in the DC corona discharge by adjusting the frequency through the experiments. In this paper, wet porous corona electrode has high possibility of cooling methode because a AC corona discharge using wet porous corona electrode is able to eject more water droplets than DC corona discharge.

Experimental Study on the Corona Discharge Characteristics of the Pin-plate Electrode Geometries (핀이 부착된 와이어형 방전극의 형상에 따른 코로나 방전특성에 대한 연구)

  • Cheong Seongir;Lee Jaekeun;Chung Dongkyu;Ahn Youngchull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.95-100
    • /
    • 2006
  • Electrostatic precipitators(EPs) have low pressure drop and high dust collection efficiency and are widely used for industrial dust collectors. The current-voltage characteristics, which are important to maintain high dust collection efficiency, depend on several factor: discharge electrode shape, gas flow property, dust loading etc. In this study, experiments are performed to investigate the current-voltage characteristics of the corona discharge of various electrode geometries and an empirical model is proposed to predict current-voltage characteristics of the corona discharge. The corona onset voltage correction coefficient$(\alpha)$ and the geometry correction coefficient$(k_g)$ are used to the conventional equation for wire-plate type discharge electrode. The corona onset voltages are -6.3kV and almost constant when the numbers of discharge pins are varied from 3 to 9. The length of discharge pins has very sensitive effects on the corona onset voltage. They are increased from -6.3 to -7.8kV when the discharge pin length are 8.5 and 4.5mm, respectively. The empirical model shows good agreement with experimental results and can predict the effects of discharge pin length and number.

Effect of the Biased Third Electrode of a Wire-Plate Type Plasma Reactor on Corona Discharge and Ozone Generation Characteristics (선대 평판형 플라즈마장치의 코로나 방전 및 오존발생 특성에 미치는 바이어스된 3전극의 영향)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.648-652
    • /
    • 2008
  • Corona discharge and ozone generation characteristics of a wire-plate plasma reactor, with a biased third electrode, have been investigated with an emphasis on the role of the bias voltage and frequency applied on the third electrode. It was found that the wire-plate plasma reactor, with the biased third electrode, had a switching characteristic on its I-V characteristics for negative and positive discharges, which is very different from that of a conventional wire-plate plasma reactor without the third electrode. As a result, the corona discharge and ozone generation characteristics of the proposed plasma reactor could be controlled by adjusting the bias voltage and frequency of the third electrode. The corona onset and breakdown voltages, and ozone generation and yield, were increased compared with those of without the third electrode. These, however, reveal the effectiveness of the biased third electrode.

Characteristics of Ozone Generation by Diameter and Polarity Variation of Corona Wire Electrode (코로나 선전극의 직경과 극성변화에 따른 오존발생특성)

  • Jung, Jae-Seung;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.85-90
    • /
    • 2012
  • In this paper, it was investigated experimentally that diameter and polarity variation of corona wire electrode affected to ozone generation of the ozone generator using a wire-to-plate type electrode. The change in the diameter(D) of the corona wire electrode has a great effect upon ozone generation, higher influence appears in the positive corona discharge than the negative corona discharge. In the case of D=0.50[mm], maximum ozone generation and power efficiency could be obtained. However, in the case of smaller D than this, the ozone generation and efficiency decreases slowly and in the case of larger D, the ozone generation decreases rapidly. It means performance decline as an ozone generator. Therefore, ozone generation and power efficiency would increase through simple optimization of the corona electrode specification.

A Study on the NOx Removal Rate by Arrangement of Discharge Electrode in Pulsed Corona Discharge Reactor (펄스 코로나 반응기에서 방전극의 배열에 따른 탈질율 연구)

  • Choi, Min;Park, So-Jin;Wi, Young-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.315-323
    • /
    • 2003
  • The goal of this study if the optimization of discharge electrode for pulsed corona discharge reactor located in thermal power plant. For this purpose, we have performed experiments of NO$_{x}$ removal rate by exchange of discharge electrode diameter and arrangement of discharge electrode in the non -thermal plasma reaction facility using a ethylene as additive. If the diameter and numbers of discharge electrode were larger, the NO$_{x}$ removal rate was higher. From these results, if we optimized the shape and installed numbers of discharge electrode at the pilot plant, we could increase the NO$_{x}$ removal rate with less amount of additive than current amount.mount.

Effect of a Cylindrical Third Electrode of a Point-Plate Type Plasma Reactor on Corona Discharge and Ozone Generation Characteristics (침대 평판형 플라즈마장치의 코로나 방전 및 오존발생 특성에 미치는 원통형 3전극의 영향)

  • Moon, Jae-Duk;Jung, Ho-Jun;Jung, Jae-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.933-937
    • /
    • 2007
  • A point plate type nonthermal plasma reactor, with a grounded cylindrical third electrode which closely- encompasses the needle point, have been investigated with an emphasis on the role of the third electrode. It was found that the point plate airgap, with the grounded third electrode, had a switching characteristic on its I V characteristics for negative and positive discharges, which is very different from that of a conventional point plate airgap without a third electrode. The corona discharge and ozone generation characteristics of the plasma reactor with the grounded cylindrical third electrode, such as the corona onset voltage. the breakdown voltage. the corona current. and the amount of output ozone, were influenced significantly by the height of the third electrode. and these characteristics can be controlled by adjusting the height of the third electrode.

Ionic Wind Generation Characteristics of a Water-Pen Point-to-Mesh Type Discharge System (수침대 그물전극형 방전장치의 이온풍 발생특성)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.783-787
    • /
    • 2009
  • A point-to-mesh type discharge system, utilizing a water-pen point as a corona discharge electrode and a mesh as an ion induction electrode, has been proposed, and the effect of the water-pen point electrode of the discharge system to the ionic wind velocity and generation yield was investigated. It was observed that the proposed discharge system with the water-pen point electrode can generate a higher ionic wind velocity as compared with that of the metal point electrode. As a result, the peak ionic wind velocities of 2.61 and 4.05 m/s for the positive and negative corona discharges of the proposed discharge system can be obtained, which are 1.39 and 1.15 times higher than those of the metal point electrode with same design. The ionic wind generation yield of 4.72 m/s/W of the discharge system with the water-pen point electrode was obtained for the positive corona, which was 3.66 times higher than that of the metal point electrode. This enhancement may be due to the effect of the water-pen point electrode.