• Title/Summary/Keyword: Corner Response

Search Result 83, Processing Time 0.028 seconds

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

New Gray Level Corner Point Detection Method (새로운 그레이 레벨 코너점 검출 방법)

  • 나재형;오해석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1062-1068
    • /
    • 2004
  • In this paper, we introduce a new gray level comer detection method to recognize corner points accurately. The new corner detector divides the corner region into many homocentric circles according to the window size, and calculates the corner response and angle of corner area about each layer to get an accurate corner point. The new corner detector has a hierarchical structure so it can detect corner point more quickly than general gray level corner detector

Characteristics of Negative Peak Wind Pressure acting on Tall Buildings with Step on Wall Surface

  • Yoshida, Akihito;Masuyama, Yuka;Katsumura, Akira
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.283-290
    • /
    • 2019
  • Corner cut, corner chamfered or a building shape change are adopted in the design of tall buildings to achieve aerodynamic superiority as well as response reduction. Kikuchi et.al pointed out that large negative peak external pressures can appear near the inside corner of set-back low rise buildings. It is therefore necessary to pay attention to facade design around steps in building surfaces. Peak wind pressures for corner cut or corner chamfered configurations are given in the AIJ code. However, they cannot be applied where there are many variations of vertical and horizontal steps. There has been no previous systematic research on peak wind pressures around steps in building surfaces. In this study, detailed phenomenon of peak wind pressures around steps in buildings are investigated focusing on vertical and horizontal distances from the building's corner.

Experimental study of masonry infill reinforced concrete frames with and without corner openings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.641-656
    • /
    • 2016
  • Reinforced concrete frame buildings with masonry infill walls are one of the most popular structural systems in the world. In most cases, the effects of masonry infill walls are not considered in structural models. The results of earthquakes show that infill walls have a significant effect on the seismic response of buildings. In some cases, the buildings collapsed as a result of the formation of a soft story. This study developed a simple method, called corner opening, by replacing the corner of infill walls with a very flexible material to enhance the structural behavior of walls. To evaluate the proposed method a series of experiments were conducted on masonry infill wall and reinforced concrete frames with and without corner openings. Two 1:4 scale masonry infill walls with and without corner openings were tested under diagonal tension or shear strength and two RC frames with full infill walls and with corner opening infill walls were tested under monotonic horizontal loading up to a drift level of 2.5%. The experimental results revealed that the proposed method reduced the strength of infill wall specimens but considerably enhanced the ductility of infill wall specimens in the diagonal tension test. Moreover, the corner opening in infill walls prevented the slid shear failure of the infill wall in RC frames with infill walls.

The relationship between time-varying eccentricity of load with the corner lateral displacement response of steel structure during an earthquake

  • Takin, Kambiz;Hashemi, Behrokh H.;Nekooei, Masoud
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.801-812
    • /
    • 2016
  • In an actual design, none of the structures with shear behaviors will be designed for torsional moments. Any failure or damages to roofs, infills, shear walls, and braces caused by an earthquake, will inevitably result in relocation of center of mass and rigidity of the structure. With these changes, the dynamic characteristics of structure could be changed during an earthquake at any moment. The main objective of this paper is to obtain the relationship between time-varying eccentricity of load and corner lateral displacement. In this study, various methods have been used to determine the structural response for time-varying lateral corner displacement. As will be seen below, some of the structural calculation methods result in a significant deviation from the actual results, although these methods include the interaction effects of modes. Controlling the lateral displacement of structure can be performed in different ways such as, passive dampers, friction dampers, semi-active systems including the MR damper and active Systems. Selecting and locating these control systems is very important to bring the maximum safety with minimum cost into the structure. According to this study will be show the relation between the corner lateral displacements of structure and time-varying eccentricity by different kind of methods during an earthquake. This study will show that the response of the structure at the corners due to an earthquake can be very destructive and because of changing the eccentricity of load, calculating the maximum possible response of system can be carried out by this method. Finally, some kind of systems must be used for controlling these displacements. The results shows that, the CQC, DSC and exact methods is comply each other but the results of Vanmark method is not comfortable for these kind of buildings.

Comer Detection in Gray Lavel Images for Wafer Die Position Recognition (웨이퍼 다이 위치 인식을 위한 명암 영상 코너점 검출)

  • 나재형;오해석
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.792-798
    • /
    • 2004
  • In this paper, we will introduce a new corner detector for the wafer die position recognition. The die position recognition procedure is necessary for WSCSP(Wafer Scale Chip Scale Packaging) technology, decide the accuracy of post-procedure. We present a hierarchical gray level corner detection method for the recognition of the die position from a wafer image. The new corner detector divides the corner region into many homocentric circles, and calculates the comer response and the angle of direction about each circle to get an accurate toner point. The new corner detector has a hierarchical structure so it can detect comer point more quickly than general gray level corner detector.

Feature Detection using Geometric Mean of Eigenvalues of Gradient Matrix (그레디언트 행렬 고유치의 기하 평균을 이용한 특징점 검출)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.769-776
    • /
    • 2014
  • It is necessary to detect the feature points existing simultaneously in both images and then find the corresponding relationship between the detected feature points. We propose a new feature detector based on geometric mean of two eigenvalues of gradient matrix which is able to measure the change of pixel intensities. The corner response of the proposed detector is proportional to the geometric mean and also the difference of two eigenvalues in the case of same geometric mean. We analyzed the localization error of the feature detection using aerial image and artificial image with various types of corners. The localization error of the proposed detector was smaller than that of the typical corner detector, Harris detector.

Shape Effects on Aerodynamic and Pedestrian-level Wind Characteristics and Optimization for Tall and Super-Tall Building Design

  • Kim, Yong Chul;Xu, Xiaoda;Yang, Qingshan;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.235-253
    • /
    • 2019
  • This paper reviews shape optimization studies for tall and super-tall building design. Firstly, shape effects on aerodynamic and response characteristics are introduced and discussed. Effects of various configurations such as corner modifications, taper, setback, openings, and twists are examined. Comprehensive comparative studies on various configurations including polygon building models, and composite type building models such as corner-cut and taper, corner-cut and taper and helical, and so on, are also discussed under the conditions of the same height and volume. Aerodynamic characteristics are improved by increasing the twist angle of helical buildings and increasing the number of sides of polygon buildings, but a twist angle of $180^{\circ}$ and a number of sides of 5 (pentagon) seem to be enough. The majority of examined configurations show better aerodynamic characteristics than straight-square. In particular, composite type buildings and helical polygon buildings show significant improvement. Next, shape effects on pedestrian-level wind characteristics around tall and super-tall buildings are introduced and discussed. Corner modification buildings show significant reductions in speed-up areas. On the other hand, setback and tapered models with wider projected widths near the ground show adverse effects on pedestrian-level wind characteristics.

Efficient Structure-Oriented Filter-Edge Preserving (SOF-EP) Method using the Corner Response (모서리 반응을 이용한 효과적인 Structure-Oriented Filter-Edge Preserving (SOF-EP) 기법)

  • Kim, Bona;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.176-184
    • /
    • 2017
  • To interpret the seismic image precisely, random noises should be suppressed and the continuity of the image should be enhanced by using the appropriate smoothing techniques. Structure-Oriented Filter-Edge Preserving (SOF-EP) technique is one of the methods, that have been actively researched and used until now, to efficiently smooth seismic data while preserving the continuity of signal. This technique is based on the principle that diffusion occurs from large amplitude to small one. In a continuous structure such as a horizontal layer, diffusion or smoothing is operated along the layer, thereby increasing the continuity of layers and eliminating random noise. In addition, diffusion or smoothing across boundaries at discontinuous structures such as faults can be avoided by employing the continuity decision factor. Accordingly, the precision of the smoothing technique can be improved. However, in the case of the structure-oriented semblance technique, which has been used to calculate the continuity factor, it takes lots of time depending on the size of the filter and data. In this study, we first implemented the SOF-EP method and confirmed its effectiveness by applying it step by step to the field data. Next, we proposed and applied the corner response method which can efficiently calculate the continuity decision factor instead of structure-oriented semblance. As a result, we could confirm that the computation time can be reduced by about 6,000 times or more by applying the corner response method.

Control of Acoustic Response of A/C Rectangular Plate Using Piezo Electric Material (압전 소자를 이용한 항공기용 사각박판에 대한 음향 반응제어)

  • Jung, Do-Hee;Park, Seen-Ok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.633-636
    • /
    • 2004
  • Acoustic response control of a corner-pinned plate using piezoelectric wafers was studied, both theoretically and experimentally. Three different sizes of aluminum alloy plates were used and available ball joints were employed to hold the plate at the four comers. The plate with the largest aspect ratio showed the largest and most clear responses to the acoustic excitation in the range of frequencies $(0\sim200Hz)$, and sound pressure levels $(80\sim100dB)$ as predicted. The reduction of the acoustic response of the plate by piezoelectric actuator was very significant, more than expected, but abatement of the sound transmission through the plate was only slightly altered by the piezoelectric actuator. This work is an original work extending earlier work with doors excited by acoustic fields. The important difference is the used of ball joints to simulate the joints.

  • PDF