• Title/Summary/Keyword: Corner Layer

Search Result 107, Processing Time 0.023 seconds

Measurement of the Laminar Boundary Layer in a Streamwise Corner by using PIV Technique (PIV 기법을 이용한 Streamwise Corner 층류 경계층 측정 연구)

  • Park, Dong-Hun;Park, Seung-O;Kwon, Ki-Jung;Shim, Ho-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1165-1172
    • /
    • 2009
  • The laminar boundary layer along a streamwise corner formed by two flat plates intersecting at right angle is measured by using Particle Image Velocimetry(PIV) technique. The free stream velocity ranges from 2.96m/s to 3.0m/s. The angle of incidence of the corner is set to 1.2 degree providing slightly favourable pressure gradient to ensure a laminar flow in the corner region. A round shape leading edge is used and the length of the model is about 1000mm. In the bisector plane, the measurement data show separation type velocity profiles having an inflection point which is a typical characteristic of laminar corner boundary layers. As the distance away from the bisector plane increases, velocity profiles are found to change into the Blasius profile. The change completes around half length of the boundary layer thickness in the bisector plane away from the bisector plane along the plate. In the bisector plane, the growth characteristic of the boundary layer thickness and the approximate similarity of velocity profiles are confirmed from the measurement data.

Effect of Reynolds number on compressible convex-corner flows

  • Chung, Kung-Ming;Chang, Po-Hsiung;Chang, Keh-Chin
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.443-454
    • /
    • 2014
  • An experimental study was conducted to investigate the effect of Reynolds number on compressible convex-corner flows, which correspond to an upper surface of a deflected flap of an aircraft wing. The flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses or Reynolds numbers. It is found that boundary layer Reynolds number, ranging from $8.04{\times}10^4$ to $1.63{\times}10^5$, has a minor influence on flow expansion and compression near the corner apex in the transonic flow regime, but not for the subsonic expansion flow. For shock-induced separated flow, higher peak pressure fluctuations are observed at smaller Reynolds number, corresponding to the excursion phenomena and the shorter region of shock-induced boundary layer separation. An explicit correlation of separation length with deflection angle is also presented.

New Gray Level Corner Point Detection Method (새로운 그레이 레벨 코너점 검출 방법)

  • 나재형;오해석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1062-1068
    • /
    • 2004
  • In this paper, we introduce a new gray level comer detection method to recognize corner points accurately. The new corner detector divides the corner region into many homocentric circles according to the window size, and calculates the corner response and angle of corner area about each layer to get an accurate corner point. The new corner detector has a hierarchical structure so it can detect corner point more quickly than general gray level corner detector

Spatial extrapolation of pressure time series on low buildings using proper orthogonal decomposition

  • Chen, Yingzhao;Kopp, Gregory A.;Surry, David
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.373-392
    • /
    • 2004
  • This paper presents a methodology for spatial extrapolation of wind-induced pressure time series from a corner bay to roof locations on a low building away from the corner through the application of proper orthogonal decomposition (POD). The approach is based on the concept that pressure time series in the far field can be approximated as a linear combination of a series of modes and principal coordinates, where the modes are extracted from the full roof pressure field of an aerodynamically similar building and the principal coordinates are calculated from data at the leading corner bay only. The reliability of the extrapolation for uplift time series in nine bays for a cornering wind direction was examined. It is shown that POD can extrapolate reasonably accurately to bays near the leading corner, given the first three modes, but the extrapolation degrades further from the corner bay as the spatial correlations decrease.

Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow - (입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 -)

  • Choi, Min-Suk;Park, Jun-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

Numerical Investigation of Forming Limit of Coated Sheet Metals (코팅제의 변형한계에 대한 수치적연구)

  • 정태훈;김종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.460-464
    • /
    • 1997
  • By the used of a similar numerical method as in the previous paper, the forming limit stain of coatedsheet metals is investigated in which the FEM is applied and J2G(J/sab 2/-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Coated two-layer sheets and sheets bonded with dissimilar sheets on both surface planes are stetched in a plane-strain atate, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the coated state, the higher limiting strain of one layer is reduced due to the lower limiting stain of the other layer and vice, and does not necessarily obey the rule of linear combination of the limiting stain of each layer weighted according thickness.

  • PDF

Numerical Investigation of Forming Limit of Clad Coated Sheet Metals (클래드코팅재의 성형성에 대한 수치적연구)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.340-345
    • /
    • 2003
  • By the use of a similar numerical method as that in the previous paper, the forming limit strain by coating method of clad sheet metals is investigated, in which the FEM is applied and J2G(J2-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Clad two-layer sheets and sheets bonded with dissimilar sheets on both surface planes are stretched in a plane-strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the clad state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighted according thickness.

  • PDF

Effects of the Inlet Boundary Layer Thickness on the Loss Mechanism in an Axial Compressor (입구 경계층 두께가 축류 압축기 손실에 미치는 영향)

  • Choi, Minsuk;Baek, Jehyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.419-426
    • /
    • 2004
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the loss mechanism in a low-speed axial compressor operating at the design condition(${\phi}=85\%$) and near stall condition(${\phi}=65\%$). At the design condition, the flow phenomena such as the tip leakage flow and hub comer stall are similar independent of the inlet boundary layer thickness. However, when the axial compressor is operating at the near stall condition, the large separation on the suction surface near the casing is induced by the tip leakage flow and the boundary layer on the blade for thin inlet boundary layer but the hub corner stall is enlarged for thick inlet boundary layer. These differences of internal flows induced by change of the boundary layer thickness on the casing and hub enable loss distributions of total pressure to be altered. When the axial compressor has thin inlet boundary layer, the total pressure loss is increased at regions near both casing and tip but decreased in the core flow region. In order to analyze effects of inlet boundary layer thickness on total loss in detail, using Denton's loss models, total loss is scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss.

  • PDF

Plating hardness and its effect to the form accuracy in shaping of corner cube on cu-plated steel plate using a single diamond tool (단결정 다이아몬드 공구에 의한 Corner Cube 가공 시, 형상정밀도에 미치는 동 도금층의 경도의 영향)

  • Lee, J.Y.;Kim, C.H.;Sea, C.W.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.64-69
    • /
    • 2014
  • This article presents machining experiments to assess the relationship between the profile accuracy and the workpiece hardness using a natural diamond tool on an ultra-precision diamond turning machine. The study is intended to secure a corner cube prism pattern for reflective film capable of high-quality outcomes. The optical performance levels and edge images of corner cubes having various hardness levels of the copper-coated layer on a carbon steel plate are analyzed. The hardness of the workpiece has a considerable effect on the profile accuracy. The higher the hardness of the workpiece, the better the profile accuracy and the worse the edge wear of the diamond tool.

Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor (다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성)

  • Shin, You-Hwan;Elder, Robin L;Kim, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.