본 논문에서는 정확한 코너점 검출을 위하여 새로운 그레이 레벨 코너점 검출 방법을 제안한다. 새로운 코너 검출자는 코너 영역을 윈도우 크기에 따라서 동심원으로 계층을 나누어 각각의 계층에서의 코너의 각도를 구하여 코너점을 검출하도록 하였다. 또한 계층적 구조를 가지고 처리함으로써 기존의 그레이레벨 코너 검출자보다 더 빠른 처리 속도를 얻을 수 있도록 하였다.
본 논문에서는 그림자가 존재하는 환경 하에서도 실제 코너만을 정확하게 추출할 수 있는 색상 기반 내잡음성 코너 검출자를 제안하였다. 먼저 그림자 경계에서 명도의 변화는 크지만 색상의 변화는 크지 않으므로 각 화소에 대한 HSI 색 공간에서 색상 가중 조합 벡터 기울기를 코너 검출자에 반영함으로써 그림자의 영향을 제거하고, 선택된 에지 화소 쌍의 색 변화 방향이 서로 반대 극성일 때는 코너 기여 가중치를 상쇄시킴으로써 불규칙 잡음에도 강건하게 코너를 검출하도록 하였다. 실험을 통하여 제안한 코너 검출자가 그림자 및 불규칙 잡음에도 강건하게 실제 코너만을 효과적으로 검출함을 확인하였다.
본 논문에서는 웨이퍼 영상에서 다이 위치를 인식하기 위한 새로운 코너점 검출 방법을 제안한다. 웨이퍼 다이 위치 인식은 WSCSP(Wafer Scale Chip Scale Packaging)기술에 필수적인 과정으로서 웨이퍼 윗면의 다이 패턴을 얼마나 정확히 인식하느냐에 따라서 후 공정의 정확도가 결정된다. 본 논문에서는 정확한 다이 위치를 인식하기 위하여 계층적 명암 영상 코너 검출 방법을 제안한다. 새로운 코너 검출자는 코너 영역을 마스크 크기에 따라서 동심원으로 나누어 각각의 동심원에서의 코너성과 방향성을 구하여 정확한 코너점을 검출하도록 하였다. 또한 계층적 구조를 가지고 처리하여 기존의 명암 영상코너 검출자 보다 더 빠른 처리 속도를 얻을 수 있도록 하였다.
동일 대상에 대한 두 영상의 등록을 위해서는 두 영상에 공통적으로 존재하는 특징점을 검출하고 검출된 특징점 간의 대응관계를 찾는 과정이 필수적이다. 본 논문에서는 화소의 밝기 변화를 측정할 수 있는 그레디언트 행렬의 고유치 기하평균에 기반한 새로운 특징점 검출기를 제안한다. 제안하는 특징점 검출기는 그레디언트 행렬의 두 고유치의 기하평균 크기에 비례하고 기하 평균 크기가 동일한 경유 두 고유치의 상대적인 차이에 비례하여 가변적으로 변하는 특성을 가진다. 제안한 특징점 검출기의 성능 평가를 위해 다양한 종류의 코너가 존재하는 합성 영상과 항공 영상을 기준 영상으로 사용하여 코너 검출의 위치 오차를 분석하였다. 제안한 검출기의 위치 오차는 Gaussian smoothing scale 조건하에서 대표적인 코너 검출기인 Harris detector의 위치 오차보다 작은 결과가 얻어졌다.
Journal of information and communication convergence engineering
/
제12권4호
/
pp.263-270
/
2014
Corner detection and feature extraction are essential aspects of computer vision problems such as object recognition and tracking. Feature detectors such as Scale Invariant Feature Transform (SIFT) yields high quality features but computationally intensive for use in real-time applications. The Features from Accelerated Segment Test (FAST) detector provides faster feature computation by extracting only corner information in recognising an object. In this paper we have analyzed the efficient object detection algorithms with respect to efficiency, quality and robustness by comparing characteristics of image detectors for corner detector and feature extractors. The simulated result shows that compared to conventional SIFT algorithm, the object recognition system based on the FAST corner detector yields increased speed and low performance degradation. The average time to find keypoints in SIFT method is about 0.116 seconds for extracting 2169 keypoints. Similarly the average time to find corner points was 0.651 seconds for detecting 1714 keypoints in FAST methods at threshold 30. Thus the FAST method detects corner points faster with better quality images for object recognition.
본 논문은 영상처리에 사용되는 코너점 추출을 위한 GP(Genetic Programming)기반의 코너 검출자를 소개한다. Harris와 SUSAN등 기존의 대표적인 코너 검출자들이 소개되어 왔고, 여러 가지 경험적인 알고리즘들이 연산 시간과 정확도 측면에서 이들 기법을 개선하기 위해서 연구되어 오고 있다. 이들 기법들은 코너점에 대한 특성을 고찰하여 이를 알고리즘화한 것으로 효율성이 높으나, 한편으로 기존의 방식이나 알고리즘에서 크게 벗어난 혁신적인 알고리즘을 발견하기에는 한계가 있다. 본 연구에서는 GP의 진화연산에 의해 자동적으로 코너 검출자를 생성함으로서 새로운 기법의 가능성을 발견하고자 한다. 제안된 방법을 다른 코너 검출자들과 테스트영상을 통해 비교 분석 하였다.
This paper introduces GP(Genetic Programming) based robust corner detectors for scaled and rotated images. Various empirical algorithms have been studied to improve computational speed and accuracy including approaches, such as the Harris and SUSAN, FAST corner detectors. These techniques are highly efficient for well-defined corners, but are limited to corner-like edges which are often generated in rotated images. It is very difficult to detect correctly edges which have characteristics similar to corners. In this paper, we have focused the above challenging problem and proposed Genetic Programming-based automated generation of corner detectors which is robust to scaled and rotated images. The proposed method is compared to the existing corner detectors on test images and shows superior results.
최근 많은 TV 영상에서 시청자의 시각적 편의와 이해를 고려하여 자막을 삽입하는 경우가 늘어나고 있다. 본 논문에서는 자막을 비디오 내 하단부에 위치하는 인위적으로 추가된 글자 영역으로 정의한다. 이러한 자막 영역의 추출은 비디오 정보 검색(video information retrieval)이나 비디오 색인(video indexing)과 같은 응용에서 글자 추출을 위한 첫 단계로 널리 쓰인다. 기존의 자막 영역 추출은 자막의 색, 자막과 배경의 자기 대비, 에지(edge), 글자 필터 등을 이용한 방법을 사용하였다. 그러나 비디오 영상내 자막이 갖는 낮은 해상도와 복잡한 배경으로 인해 자막 추출에 어려움이 있다. 이에 본 논문은 코너검출기(corner detector)를 이용한 효율적인 비디오 자막 영역 추출 방법을 제안하고자 한다. 제안하는 알고리즘은 해리스 코너 검출기를 이용한 코너 맵 생성, 코너 밀도를 이용한 자막 영역 후보군 추출, 레이블링(labeling)을 이용한 최종 자막 영역 결정, 노이즈(noise) 제거 및 영역 채우기의 네 단계로 구성된다. 제안하는 알고리즘은 색 정보를 이용하지 않기 때문에 여러 가지 색으로 표현되는 자막 영역 추출에 적용가능하며 글자 모양이 아닌 글자의 코너를 이용하기 때문에 언어의 종류에 관계없이 사용 될 수 있다. 또한 프레임간 자막 영역 업데이트를 통해 자막 영역 추출의 효율을 높였다. 다양한 영상에 대한 실험을 통해 제안하는 알고리즘이 효율적인 비디오 자막 영역 추출 방법임을 보이고자 한다.
본 논문은 Haar 웨이브릿변환과 평균 박스필터에 기반을 둔 Haar 웨이브릿 특징 검출자를 제안한다. 원 영상을 Haar 웨이브릿 변환을 통해 분해하여 영상의 분산정보를 얻고 영상 식별을 위한 특징정보를 추출한다. 영역을 나타내는 주위영역들 중에 분산이 가장 큰 영역의 관심점을 검출하기 위하여 국부 분산정보를 비교하는 평균 박스필터를 적용하고 빠른 계산을 위한 적분영상 기법을 사용한다. Haar 웨이브릿 변환과 평균 박스필터를 이용하여 제안한 검출자는 밝기 변화, 스케일 변화, 영상의 회전에 민감하지 않는 특성을 제공할 수 있다. 실험결과는 제안한 방법이 적은 관심점을 사용하는 경우에도 기존의 DoG 검출자와 Harris corner 검출자에 비해 더 높은 repeatability와 효율성 그리고 매칭정확성을 달성할 수 있음을 보여준다.
IEIE Transactions on Smart Processing and Computing
/
제6권4호
/
pp.253-261
/
2017
In this paper, a corner detection method based on a new non-cornerness measure is presented. Rather than evaluating local gradients or surface curvatures, as done in previous approaches, a non-cornerness function is developed that can identify stable corners by testing an image region against a set of desirable corner criteria. The non-cornerness function is comprised of two steps: 1) eliminate any pixel located in a flat region and 2) remove any pixel that is positioned along an edge in any orientation. A pixel that passes the non-cornerness test is considered a reliable corner. The proposed method also adopts the idea of non-maximum suppression to remove multiple corners from the results of the non-cornerness function. The proposed method is compared with previous popular methods and is tested with an artificial test image covering several corner forms and three real-world images that are universally used by the community to evaluate the accuracy of corner detectors. The experimental results show that the proposed method outperforms previous corner detectors with respect to accuracy, and that it is suitable for real-time processing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.