• Title/Summary/Keyword: Corner Cavity

Search Result 39, Processing Time 0.023 seconds

A STUDY ON TOOTH FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (치아파절에 관한 3차원유한요소법적 연구)

  • Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.291-316
    • /
    • 1993
  • Restorative procedures can lead to tooth fracture due to the relatively small amount of the remaining tooth structure. It is essential to prevent fractures by having a clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, MO amalgam cavity were prepared on maxillary first premolar and filled with amalgam. Three dimensional, model with 1365 8-node brick elements was made by serial photographic method. In this model, isthmus was varied in width at 1/4, 1/3, 1/2 and 2/3 of intercuspal width and material properties were given for three element groups, i.e., enamel, dentin and amalgam. A load of 500 N was applied vertically on amalgam and enamel. In case of enamel loading, 2 model (with and without amalgam) was compared to consider the possibility of play at the interface between tooth material and amalgam. These models were analyzed with three dimensional finite element method. The results were as follows: 1. The stress was concentrated on the facio-pulpal line angle and distal marginal ridge of the cavity. 2. With the increase of the isthmus width, the stress spread around the facio-pulpal line angle and the area of stress concentration moved toward the proximal box. 3. In case of narrow isthmus width, the initiation point of crack would be in the area of isthmus corner of the cavity, and with the increase of the isthmus width, it would move toward the proximal box and at the same time the possibility of crack increase at the distal marginal ridge. 4. The direction of crack progressed outward and downward from the facio-pulpal line angle, and with the increase of the isthmus width, it approximated vertical direction. At the marginal ridge, it occurred in vertical direction. 5. It would be favorable to make the isthmus width narrower than a third of the intercuspal width, and to cover the cusp if isthmus width were wider than half of the intercuspal width. 6. It is necessary to apply the possibility of play to the finite element analysis.

  • PDF

The analysis of EDM characteristics for Cu-electrode using LIGA process (LIGA 공정을 이용한 Cu전극의 방전가공 특성 분석)

  • Lee, S.H.;Jung, T.S.;Chang, S.S.;Kim, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.383-386
    • /
    • 2007
  • In this study, the analysis was carried out for Electrical Discharge Machining (EDM) characteristics of the Cu electrodes by LIGA process. The shape of electrodes has 324 pins for the cavity of BGA(Ball Grid Array) type test socket mold. BGA test sockets are used in the inspection process of the semi-conductor I.C chip manufacturing. In the work, the machining performance for EDM of the electrodes was analyzed on dimensional accuracy and wear rate. The dimensional accuracy was measured for dimension of the pins, pitch size between the pins and the roundness of corner edge using optical measuring machine.

  • PDF

A new incompatible mixed formulation for incompressible and nearly-incompressible media (비압축성 문제에 대한 비적합 복합유한요소 정식화)

  • Ju, Sang-Baek;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.365-371
    • /
    • 1998
  • In the present study, we attempted to add the incompatible functions as additional variable terms to the conventional u-p formulation. It is derived from the four-field generalized variational principle that encompasses velocity, pressure, velocity strains and stress fields as independent interpolated variables. As a severe test of the present formulation, we have investigated the driven cavity with the corner velocity singularity like leaky lid. Through the test, the present element performs very well without unstable oscillation of pressure distribution.

A Study on Non-Axisymmetric Precision Forging with and without Flash (플래쉬 유무에 따른 비축대칭 정밀단조에 관한 연구)

  • 배원병;김영호;최재찬;이종헌;김동영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.218-223
    • /
    • 1993
  • An UBET(Upper Bound Elemental Technique) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner and plane-strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, from which the upper-bound forging load, the flow pattern, the grid pattern, the veocity distribution and the effective strain are determined. To show the merit of flashless forging, the result of flashless and flash forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

A Study on the Non-Axisymmetric Closed-Die Ring Forging (비축대칭 형상의 밀폐형 링 단조에 관한 연구)

  • 배원병;김영호;이종헌;이원희
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.202-214
    • /
    • 1994
  • An upper bound elemental technique(UBET) is applied to predict the forging load and die-cavity filling for non-axisymmetric ring forging. In order to analyze the process easily, it is suggested that the finial product is divided into three different deformation regions. That is axisymmetric part in corner, lateral plane-strain part and shear deformation on boundaries between them. the place-strain and axisymmetric part are combinded by building block method. Also the total energy is computered through combination of three deformation part. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

Application of wavelet transform in electromagnetics (Wavelet 변환의 전자기학적 응용)

  • Hyeongdong Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1244-1249
    • /
    • 1995
  • Wavelet transform technique is applied to two important electromagnetic problems:1) to analyze the frequency-domain radar echo from finite-size targets and 2) to the integral solution of two- dimensional electromagnetic scattering problems. Since the frequency- domain radar echo consists of both small-scale natural resonances and large-scale scattering center information, the multiresolution property of the wavelet transform is well suited for analyzing such ulti-scale signals. Wavelet analysis examples of backscattered data from an open- ended waveguide cavity are presented. The different scattering mechanisms are clearly resolved in the wavelet-domain representation. In the wavelet transform domain, the moment method impedance matrix becomes sparse and sparse matrix algorithms can be utilized to solve the resulting matrix equationl. Using the fast wavelet transform in conjunction with the conjugate gradient method, we present the time performance for the solution of a dihedral corner reflector. The total computational time is found to be reduced.

  • PDF

A Study on the Process Design of Non-Axisymmetric Forging Components (비축대칭 형상의 단조 공정 설계에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Park, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.57-68
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to predict forging load, die-cavity filling, preform in non-axisymmetric forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner, plane-strain part in lateral. The plane-strain and axisymmetric parts are combined by building block method. And the total energy is computed through combination of three deformation parts. A dumbbell-type preform has been obtained from height and volumetric compensations of the billet based on the backward simulation. Experimetns have been carried out with pure plasticine at room temperature. Theoretical predictions are in good agreement with expereimental results.

  • PDF

A Study on Non-Axisymmetric Ring Forging Using UBET (UBET를 이용한 비축대칭 링 단조에 관한 연구)

  • 배원경;김영호;이종헌;이원희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.63-70
    • /
    • 1994
  • An upper bound elemental technique(UBET) is applied to predict forging load and die-cavity filling for non-axisymmetric ring forging. The finial product is divided into three different deformation regions. That is axisymmetric part in corner, lateral plane-strain part and shear deformation on boundaries between them. The plane-strain and axisymmetric part are combinded by building block method. Also the total energy is computered through combination of three deformation part. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

The influence of composite resin restoration on the stress distribution of notch shaped noncarious cervical lesion A three dimensional finite element analysis study (복합레진 수복물이 쐐기형 비우식성 치경부 병소의 응력 분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Lee, Chae-Kyung;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.69-79
    • /
    • 2007
  • The purpose of this study was to investigate the effects of composite resin restorations on the stress distribution of notch shaped noncarious cervical lesion using three-dimensional (3D) finite element analysis (FEA). Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072 ; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid or flowable resin and each restoration was simulated with adhesive layer thickness ($40{\mu}m$) A static load of 500 N was applied on a point load condition at buccal cusp (loading A) and palatal cusp (loading B). The principal stresses in the lesion apex (internal line angle of cavity) and middle vertical wall were analyzed using ANSYS. The results were as follows 1. Under loading A, compressive stress is created in the unrestored and restored cavity. Under loading B, tensile stress is created. And the peak stress concentration is seen at near mesial corner of the cavity under each load condition. 2. Compared to the unrestored cavity, the principal stresses at the cemeto-enamel junction (CEJ) and internal line angle of the cavity were more reduced in the restored cavity on both load con ditions. 3. In teeth restored with hybrid composite, the principal stresses at the CEJ and internal line angle of the cavity were more reduced than flowable resin.

Development of Manufacturing Technology for Aluminum Automotive part with Warm Hydroforming (온간하이드로포밍을 이용한 알루미늄 자동차부품 제조기술 개발)

  • Sohn, S.M.;Lee, M.Y.;Kim, B.J.;Moon, Y.H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.93-98
    • /
    • 2006
  • Warm forming technology was classified into hot gas forming of using compressible fluid as a nitrogen gas and warm hydroforming of using the incompressible fluid as a thermal oil by using medium fluid. In this study, the aluminum side-rail part was developed with warm hydroforming technology. For the warm hydroforming system, top and bottom die was designed to insert heating cartridge in die cavity and special indirect fluid heating system was designed to heat the thermal oil. As increase the temperature, hydroformability was increased linearly. Aluminum side-rail center part was formed 90% at the internal pressure of 100bar and perfectly formed at 300bar within a moderate temperature. The tube material used for warm hydroforming was a aluminum 6000 series alloy with the diameter of 120mm, thickness of 5mm, length of 1,300mm. Warm hydroformed side-rail center part had 20% of maximum expansion ratio and below 20% of maximum thinning ratio at corner radius. This results were provided to show warm hydroforming possibility for aluminum automotive components.

  • PDF