• Title/Summary/Keyword: Corneagenous cell

Search Result 3, Processing Time 0.014 seconds

Morphology of Drosophila Ocellar Corneagenous Cells to the Development (초파리 단안의 발생시기에 따른 각막형성세포의 형태)

  • Yoon, Chun-Sik
    • Applied Microscopy
    • /
    • v.29 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • Morphological changes of Drosophila ocellar corneagenous cells were studied to the development with electron microscopy, and the movement of produced proteins was traced with autoradiography. Corneagenous cells of immediate postemergence showed very active secretion pattern. However, a few days after the emergence, the secretory activity of corneagenous cell was supposed to be dropped suddenly. In autoradiography, almost of proteins that produced by corneagenous cells moved toward lens. From this, it was supposed that the corneagenous cells do not function in photoreceptor cells rather in the formation of lens at the postemergence stage. Corneagenous cells of pupal stage were well developed. In the period of lens formation, rER of corneagenous cells were well developed and it suggested very active material metabolism. Granules and microtubules were also frequently observed and the later would be a pathway of the movement of materials. In conclusion, corneagenous cells were well developed at vigorous lens forming stage. After emergence, when the lens formation was completed, both the function and the size of corneagenous cells were reduced.

  • PDF

Degeneration of Ocellar Photoreceptor System on Drosophila rdgC Mutant (초파리 rdgC 돌연변이체 단안 시각계의 퇴행현상)

  • Yoon, Chun-Sik
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.391-398
    • /
    • 1998
  • The morphological phenotype on ocellus of Drosophila rdgC mutant was observed with electron microscope. The result showed the particular phenotype that was not found in other retinal degenarative mutants. The most distinct difference was the orientation of photoreceptor cells. The photoreceptor cells did not attached to corneagenous cells but dropped under corneagenous cells and assembled around newly formed space. Enormous multivesicle bodies caused by the degeneration of photoreceptor cells were frequently found. Rhabdomeres were also severely degenerated in consequence of the mutant. Another degeneration was found in a part of photoreceptor cell, but the degeneration of subrhabdomeric cisternae (SRC) was not found. It was a ovious difference of rdgC comparing with other two retinal degenerative mutants, rdgA and rdgB. As a result, rdgC mutant was affected on the attachment between photoreceptor cells and corneageneous cells, and it suggested the defect of cell-cell attachment. In addition, rdgC mutant was accompanied by the defect not only in retina but nerve system. The results were agreed to the reference discussion that the rdgC molecule is exist in the nerve.

  • PDF

Ultrastructure of Stemmata in Cabbage Butterfly, Pieris rapae L. (배추흰나비 옆홑눈의 미세구조)

  • Kim, Chang-Shik
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.9-16
    • /
    • 1995
  • Ultrastructure of stemmata(larval eye) of 5th-instar larval in cabbage butterfly, Pieris rapae L, was morphologically investigated with light microscope, scanning electron microscope and transmission electron microscope Six stemmata are on each side of the head. Stemmata V and VI have a Y-shaped sulcus on the surface of their corneal lenses, the others have a columnar shaped process and smooth globular surface. The visual type of stemmata is resembled a single ommatidium of compound eye. The dioptric apparatus are a biconvex shaped cornea and crystalline cone. As a photoreceptor, each stemmata consists of 7 retinular cells arranged into 2 tiers. The first ceil tier of 3 distal retinular cells has formed a V-shaped cup rhabdome and the second cell tier of 4 basal retinular cells has formed a H-shaped fused rhabdome. Each retinular cell filled with pigment granules and contained multivesiclular bodies, coated vesicle and common organelles. The peripheral parts of retinular cells are enveloped by neuroglia cells and retinular cells are surrounded by 3 corneagenous cells. The distal portions of the 3 corneagenous cells contact each other, but the Y-shaped stemmata is separated from each other immediately under the cornea. The 7 axons from each stemma congregate into a bundle and each 7-axon group joins to form a stemmatal nerve, consisting of 42 retinular axons.

  • PDF