• Title/Summary/Keyword: Corn production

Search Result 1,173, Processing Time 0.023 seconds

Study on Forage Production under Agrivoltaic System (영농형 태양광 시스템 하부를 활용한 조사료 생육 연구)

  • Nam, Cheol Hwan;Park, Man Ho;Yun, An A;Ji, Hee Jung;Choi, Bo ram;Sun, Sang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In the winter forage study, Italian ryegrass(IRG) and barley were selected. In 2018, the dry matter yield of IRG was 16,915kg per ha under the Agrivoltaic System; this was a little more than 16,750kg per ha of outdoors. On the contrary, the dry matter yield of barley was slightly less under the Agrivoltaic System than that of outdoors. In 2019, the dry matter yield under the Agrivoltaic System was 12,062kg per ha for IRG and 12,195kg per ha for the barley; this was 5.4% and 11.5% less than that of outdoors, respectively. In the summer forage study, corn and sorghum×sudangrass were selected. In 2019, the dry matter yield of corn under the Agrivoltaic System was 13,133kg per ha which was 17% less than that of outdoors. The dry matter yield of sorghum×sudangrass was 12,450kg per ha, which was 82.5% of that of outdoors. In 2020, the dry matter yield of corn under the Agrivoltaic System was 8,033kg per ha which was 7.9% less than that of outdoors. The dry matter yield of sorghum×sudangrass was 5,651kg per ha, which was 11.4% less than that of outdoors.

Influences of Cultural Medium Component on the Production of Poly($\gamma$-glutamic acid) by Bacillus sp. RKY3

  • Jung Duk-Yeon;Jung Sunok;Yun Jong-Sun;Kim Jin-Nam;Wee Young-Jung;Jang Hong-Gi;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.289-295
    • /
    • 2005
  • In this study, the cultural medium used for the efficient production of $\gamma$-PGA with a newly isolated Bacillus sp. RKY3 was optimized. It was necessary to supplement the culture medium with L-glutamic acid and an additional carbon source in order to induce the effective production of $\gamma$-PGA. The amount of $\gamma$-PGA increased with the addition of L-glutamic acid to the medium. The addition of 90 g/L L-glutamic acid to the medium resulted in the maximal yield of $\gamma$-PGA (83.2 g/L). The optimum nitrogen source was determined to be peptone, but corn steep liquor, a cheap nutrient, was also found to be effective for $\gamma$-PGA production. Both the $\gamma$-PGA production and cell growth increased rapidly with the addition of small amounts of $K_2HPO_4$ and $MgSO_4\cdot7H_{2}O$. Bacillus sp. RKY3 appears to require $Mg^{2+}$, rather than $Mn^{2+}$, for $\gamma$-PGA production, which is distinct from the production protocols associated with other, previously reported bacteria. Bacillus sp. RKY3 may also have contributed some minor $\gamma$-PGA depolymerase activity, resulting in the reduction of the molecular weight of the produced $\gamma$-PGA at the end of fermentation.

Statistical Optimization of Production Medium for Enhanced Production of Succinic Acid Produced by Anaerobic Fermentations of Actinobacillus succinogenes (Actinobacillus succinogenes의 혐기성배양에 의해 생합성 되는 숙신산의 생산성 향상을 위한 통계적 생산배지 최적화)

  • Park, Sang-Min;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.165-178
    • /
    • 2014
  • Statistical medium optimization has been carried out for the production of succinic acid in anaerobic fermentations of Actinobacillus succinogenes. Succinic acid utilized as a precursor of many industrially important chemicals is a fourcarbon dicarboxylic acid, biosynthesized as one of the fermentation products of anaerobic metabolism by A. succinogenes. Through OFAT (one factor at a time) experiments, corn steep liquor (CSL), a very cheap agricultural byproduct, was found to have significant effects on enhanced production of succinic acid, when supplemented along with yeast extract. Hence, using these factors including glucose as a carbon/energy source, interactive effects were investigated through $2^n$ full factorial design (FFD) experiments, showing that the concentration of each component (i.e., glucose, yeast extract and CSL) should be higher. Further statistical experiments were conducted along the steepest ascent path, followed by response surface method (RSM) in order to find out optimal concentrations of each constituent. Consequently, optimized concentrations of glucose, yeast extract and CSL were observed to be 180 g/L, 15.08 g/L and 20.75 g/L respectively (10 g/L of $NaHCO_3$ and 100 g/L of $MgCO_3$ to be supplemented as bicarbonate suppliers), with the estimated production level of succinic acid to be 92.9 g/L (about 3.5 fold higher productivity as compared to the initial medium). Notably, the RSM-estimated production level was almost similar to the amount of succinic acid (92.9 g/L vs. 89.1 g/L) produced through the actual fermentation process performed using the statistically optimized production medium.

In vitro Evaluation of Different Feeds for Their Potential to Generate Methane and Change Methanogen Diversity

  • Kim, Seon-Ho;Mamuad, Lovelia L.;Jeong, Chang-Dae;Choi, Yeon-Jae;Lee, Sung Sill;Ko, Jong-Youl;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1698-1707
    • /
    • 2013
  • Optimization of the dietary formulation is the most effective way to reduce methane. Nineteen feed ingredients (brans, vegetable proteins, and grains) were evaluated for their potential to generate methane and change methanogen diversity using an in vitro ruminal fermentation technique. Feed formulations categorized into high, medium and low production based on methane production of each ingredient were then subjected to in vitro fermentation to determine the real methane production and their effects on digestibility. Methanogen diversity among low, medium and high-methane producing groups was analyzed by PCR-DGGE. The highest methane production was observed in Korean wheat bran, soybean and perilla meals, and wheat and maize of brans, vegetable protein and cereal groups, respectively. On the other hand, corn bran, cotton seed meal and barley led to the lowest production in the same groups. Nine bacteria and 18 methanogen 16s rDNA PCR-DGGE dominant bands were identified with 83% to 99% and 92% to 100% similarity, respectively. Overall, the results of this study showed that methane emissions from ruminants can be mitigated through proper selection of feed ingredients to be used in the formulation of diets.

Production of Organic Acids from Food By-Products - Mass Production of Organic Acids by Continuous Flow Ceil Recycling Fermentation - (식품부산물로부터 유기산의 대량생산공정에 관한 연구 - 세포재순환식 연속발효를 이용한 유기산의 대량 생산 -)

  • Ju Yun-Sang;Jin Sun-Ja;Hwang Pil-Gi;Choi Chul-Ho;Lee Eui-Sang
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.484-488
    • /
    • 2004
  • Fermentation studies were conducted in batch and continuous flow cell-recycle reactors with food by-products as substrates. The genus Propionibacterium acidipropionici ATCC 4965 was utilized in the production of organic acids. Good performance was achieved in the batch fermentation using hydrol as a carbon source and corn steep liquor (CSL) as nitrogen and vitamin sources. Product yields and productivity based on maximum values were 0.80 g total acids/g glucose and 0.26 g total acids/L/h, respectively, when $3\%$, (w/v) of hydrol and $2.5\%$, (w/v) of CSL were utilized. Continuous fermentation with cell-recycling system using the optimum amounts of substrates resulted in dramatic increase in cell concentration (X) and maximum productivity (P). Compared to the batch fermentation, X and P were increased by as much as 21 and 13 times, respectively, at the dilution ratio of $0.2\;hr^{-1}$, indicating that cell recycling fermentation of food by-products provides valuable means for the mass production of organic acids as well as utilizing cell mass as good nutrient resources.

Prediction of net energy values in expeller-pressed and solvent-extracted rapeseed meal for growing pigs

  • Li, Zhongchao;Lyu, Zhiqian;Liu, Hu;Liu, Dewen;Jaworski, Neil;Li, Yakui;Lai, Changhua
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • Objective: The objective of this study was to determine net energy (NE) of expeller-press (EP-RSM) and solvent-extracted rapeseed meal (SE-RSM) and to establish equations for predicting the NE in rapeseed meal (RSM) fed to growing pigs. Methods: Thirty-six barrows (initial body weight [BW], 41.1±2.2 kg) were allotted into 6 diets comprising a corn-soybean meal basal diet and 5 diets containing 19.50% RSM added at the expense of corn and soybean meal. The experiment had 6 periods and 6 replicate pigs per diet. During each period, the pigs were individually housed in metabolism crates for 16 days which included 7 days for adaption to diets. On day 8, pigs were transferred to respiration chambers and fed their respective diet at 2,000 kJ metabolizable energy (ME)/kg BW0.6/d. Feces and urine were collected, and daily heat production was measured from day 9 to 13. On days 14 and 15, the pigs were fed at 890 kJ ME/kg BW0.6/d and fasted on day 16 for evaluation of fasting heat production (FHP). Results: The FHP of pigs averaged 790 kJ/kg BW0.6/d and was not affected by the diet composition. The NE values were 10.80 and 8.45 MJ/kg DM for EP-RSM and SE-RSM, respectively. The NE value was positively correlated with gross energy (GE), digestible energy (DE), ME, and ether extract (EE). The best fit equation for NE of RSM was NE (MJ/kg DM) = 1.14×DE (MJ/kg DM)+0.46×crude protein (% of DM)-25.24 (n = 8, R2 = 0.96, p<0.01). The equation NE (MJ/kg DM) = 0.22×EE (% of DM)-0.79×ash (% of DM)+14.36 (n = 8, R2 = 0.77, p = 0.018) may be utilized to quickly determine the NE in RSM when DE or ME values are unavailable. Conclusion: The NE values of EP-RSM and SE-RSM were 10.80 and 8.45 MJ/kg DM. The NE value of RSM can be well predicted based on energy content (GE, DE, and ME) and proximate analysis.

Incorporation of n-3 Long-chain Polyunsaturated Fatty Acids into Duck Egg Yolks

  • Chen, Tian-Fwu;Hsu, Jenn-Chung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.565-569
    • /
    • 2003
  • The objective of this experiment was to determine the effects of different levels of refined cod liver oil (RCLO) on laying performance, n-3 polyunsaturated fatty acids composition (n-3 PUFAs) and the organoleptic evaluation of duck egg yolks. A total of 180 30 wk old laying Tsaiya ducks, at the beginning of peak production, were allotted into 6 treatments with 3 replicates each. Ducks were fed one of the 6 experimental diets, supplemented with 2% tallow (control) and graded levels of RCLO at 2, 3, 4, 5, and 6% to a corn-soybean diets, respectively, for 6 wks. All of the experimental diets were formulated to be both isocaloric and isonitrogenous. Feed and water were supplied ad libitum throughout the experimental period. The results indicated that the RCLO supplementation levels did not affect (p>0.05) egg production, egg mass, feed intake, feed efficiency or body weight change. Egg weight was the lightest when the ducks received the 6% RCLO diet. The eicosapentaenoic acid, docosahexaenoic acid, and total n-3 PUFAs contents in the yolks increased with increasing RCLO supplementation. The taste and general acceptability of the hard-boiled eggs were not significantly different among the treatments. However, a fishy flavor was much higher when ducks were fed diets supplemented with 5% and 6% RCLO diets.

Effects of Replacing Nonfiber Carbohydrates with Nonforage Detergent Fiber from Cassava Residues on Performance of Dairy Cows in the Tropics

  • Kanjanapruthipong, J.;Buatong, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.967-972
    • /
    • 2004
  • Four Holstein$\times$Indigenous cows with ruminal canulas were used in a 4$\times$4 Latin square design with 28 d periods to determine the effect of replacing nonforage fiber source (NFFS) from cassava residues for non-fiber carbohydrates (NFC) on ruminal fermentation characteristics and milk production. Dietary treatments contained 17% forage neutral detergent fiber (FNDF) from corn silage and 0, 3, 6 and 9% nonforage NDF from cassava residues and 11% nonforage NDF from other NFFS, so that levels of nonforage NDF were 11, 14, 17 and 20% dry matter (DM). Intakes of DM and net energy for lactation, average daily gain and milk fat percentage were not different (p>0.05). Ruminal pH, ammonia concentrations, acetate to propionate ratios, 24 h in sacco fiber digestibility significantly increased with increasing contents of nonforage NDF from cassava residues. Concentrations of VFA, urinary excretion of purine derivatives, milk protein percentage, production of milk and 4% FCM significantly decreased. These results suggest that NFC in diets is one of the limiting factors affecting productivity of dairy cows in the tropics and thus NFFS is better used as partial replacements for FNDF.

Effect of Rumen Protected Methionine on Lactational Performance of Dairy Cows

  • Izumi, K.;Kikuchi, C.;Okamoto, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1235-1238
    • /
    • 2000
  • Thirty-six Holstein dairy cows were used to evaluate the effect of a rumen protected methionine supplement (RPMet). The cows were divided into two groups of 18 each (control/experimental). The experimental group was given 15 g/d of RPMet (Mepron $^{(R)}$M85, Degussa) from the 4th to the 26th week postpartum. All cows were fed a similar amount of forage including alfalfa silage, corn silage and timothy silage. Concentrate mixture was offered in proportion to the milk yield of each cow. Sufficiency of major metabolizable AAs was checked. Milk yield and milk composition was monitored for each individual cow. A metabolic profile test (MPT) was carried out at the 7th, 11th and 21st week postpartum. Without supplement, both methionine and leucine fell short of the daily requirement. Supplementation with 15 g/d RPMet was calculated to be within a sufficient margin of safety. Milk yield tended to remain higher in the supplemented group than in the controls during supplementation with RPMet. The differences in weekly milk production at the 17th, 18th, 19th and 22nd weeks postpartum were significantly high in the RPMet group (p<0.05). The average 305-d milk yield and the percentages of milk fat, milk protein and solids-not-fat were not affected by the treatment. No differences were observed in either the somatic cell count in the milk or the reproductive status. Judging from MPT, all the cows were in good health during lactation.

Commercial Production and Separation of Catalase Produced by Micrococcus sp.

  • Lee, Ho;Suh, Hyung-Joo;Yu, Hee-Jong;So, Sung;Oh, Sung-Hoon
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2002
  • A Micrococcus sp. producing catalase was isolated from soil, and a commercial-scathe cultivation and purification of catalase were conducted. The maximum catalase activity was about 103 BU/mL obtained after 46 hr of cultivation in a 30 L fermenter containing 2% glucose, 2% peptone, 4% yeast extract, and 0.5% NaCl. Soybean sauce, CSL (corn steep liquor), and yeast extract were also studied as media substitutes in the media 30 L fermenter. The optimum medium components for the production catalase were found to be 2% glucose, 4% soybean sauce, and 16% CSL. In a 18 kL fermenter, the stationary phase in the cell growth and maximum catalase activity (112 BU/mL) were reached after 46 hr of cultivation, which was the same result as in the 30 L fermenter. The catalase activity was purified with over 17 folds in four steps with a 33.6% yield. From 104,250 mg of protein after cell lysis, 1,966 mg of the purified enzyme with a specific activity of 192.7 kBU/mg was obtained. The residual activity with the addition of 10% NaCl exhibited more than 100%. The use of just NaCl produced a higher residual activity than combination of bencol (benzyldimethyl ammoniumchloride) and PG (propyleneglycol).