• Title/Summary/Keyword: Corn Steep Liquor

Search Result 92, Processing Time 0.022 seconds

Xylanase Production by Mixed Culture Using Crude Hemicellulose from Rice Straw Black Liquor and Peat Moss as an Inert Support

  • Shata, Hoda Mohamed Abdel Halim;El-Deen, Azza Mohmed Noor;Nawwar, Galal Abdel Moen;Farid, Mohmed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.313-320
    • /
    • 2014
  • Black liquor (BL) is a by-product of rice straw pulping process. It is a low costs raw material for production value-adding proteins and enzymes, which has been paid more and more attention to reduce its environmental pollution. Mixed cultures of micelial fungi, Trichoderma reesei Northern Regional Research Laboratory (NRRL)11236, Trichoderma reesei NRRL 6165 and Aspergillus niger strains NRC 5A, NRC 7A, and NRC 9A were evaluated for their ability to produce xylanase using crude hemicellulose (CHC) prepared from BL and peat moss as an inert support under solid state fermentation (SSF). The most potent strains, A. niger NRC 9A (818.26 U/g CHC) and T. reesei NRRL 6165 ($100.9{\pm}57.14$ U/g CHC), were used in a mixed culture to enhance xylanase production by co-culturing under SSF. In the mixed culture, xylanase production ($1070.52{\pm}12.57$ U/g CHC) was nearly1.3 and 10.6-fold increases over the activities attained in their monocultures, A. niger NRC 9A and T. reesei NRRL 6165, respectively. Optimization of the culture parameters of the mixed culture SSF process, concentration of ammonium sulfate and corn steep liquor, CHC/peat moss ratio, inoculum size and ratios of the two strains, initial pH value, initial moisture content and incubation time, exhibited a significant increase ($2414.98{\pm}84.02$ U/g CHC) in xylanase production than before optimization.

Studies on Microbial Inulase (Part I) -A Study on the Isolation of an Inulase Producing strain and the Optimum Cultural Conditions for the Enzyme Production- (미생물(微生物) Inulase에 관한 연구(硏究) 제1보(第一報) -Inulase생산균주(生産菌株)의 분리(分離)와 효소생산(酵素生産)을 위한 배양조건(培養條件)의 검토(檢討)-)

  • Kim, Ki-Choul
    • Applied Biological Chemistry
    • /
    • v.18 no.1
    • /
    • pp.42-51
    • /
    • 1975
  • Penicillium sp I which produces a powerful hydrolysing enzyme was isolated from putrefid and dry Jerusalem artichoke medium. The strain was used to study on the optimum culture conditions for enzyme production. The results obtained are as follows: 1. Penicillium sp I was a vigorous strain to produce inulase. 2. The optimum culture conditions of the strain was examined in the Jerusalem artichoke extract medium and the synthetic medium. 3. Inulase productivity in the Jerusalem artichoke extract medium was higher than that of the synthetic medium. 4. The optimum culture period of the Jerusalem artichoke extract medium was four days, whereas that of the synthetic medium was five days. 5. The optimum temperature, pH and concentration in the Jerusalem artichoke extract medium were $30^{\circ}C$, 5.0 and 4.0% (W/V), respectively. Meanwhile, the optimum temperature, pH and concentration in the synthetic medium were $30{\sim}33^{\circ}C$, $5.0{\sim}6.0$, and $1.0{\sim}1.5%$ (W/V), respectively. 6. Corn steep liquor, peptone, $(NH_4)_2HPO_4,\;NH_4H_2PO_4,\;(NH_4)_2SO_4$, etc. were favorable as nitrogen sources. Of these, especially, Corn steep liquor and peptone as organic nitrogen sources caused an increase in inulase production in the synthetic medium. 7. All sugars except for inulin have no effect upon the inulase production. 8. KCl, $MgSO_4\;and\;FeSO_4$ were favourable mineral sources for inulase production.

  • PDF

The Improvement of Cephalosporin C Production by Fed-batch Culture of Cephalosporium acremonium M25 Using Rice Oil

  • Kim Jin Hee;Lim Jung Soo;Kim Seung Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.459-464
    • /
    • 2004
  • The objective of this study is to improve cephalosporin C (CPC) production byoptimization of medium and culture conditions. A statistical method was introduced to optimize the main culture medium. The main medium for CPC production was optimized using a statistical method. Glucose and corn steep liquor (CSL) were found to be the most effective factors for CPC production. Glucose and CSL were optimized to 2.84 and $6.68\%$, respectively. CPC produc­tion was improved $50\%$ by feeding of $5\%$ rice oil at day 3rd and 5th day during the shake flask culture of C acremonium M25. The effect of agitation speeds on CPC production in a 2.5-L bio­reactor was also investigated with fed-batch mode. The maximum cell mass (54.5 g/L) was obtained at 600 rpm. However, the maximum CPC production (0.98 g/L) was obtained at 500 rpm. At this condition, the maximum CPC production was improved about $132\%$ compared to the re­sult with batch flask culture.

Production of Glutaminase (E.C. 3.2.1.5) from Zygosaccharomyces rouxii in Solid-State Fermentation and Modeling the Growth of Z. rouxii Therein

  • Iyer, Padma;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.737-748
    • /
    • 2010
  • Glutaminase production in Zygosaccharomyces rouxii by solid-state fermentation (SSF) is detailed. Substrates screening showed best results with oatmeal (OM) and wheatbran (WB). Furthermore, a 1:1 combination of OM:WB gave 0.614 units/gds with artificial sea water as a moistening agent. Evaluation of additional carbon, nitrogen, amino acids, and minerals supplementation was done. A central composite design was employed to investigate the effects of four variables (viz., moisture content, glucose, corn steep liquor, and glutamine) on production. A 4-fold increase in enzyme production was obtained. Studies were undertaken to analyze the time-course model, the microbial growth, and nutrient utilization during SSF. A logistic equation ($R^2$=0.8973), describing the growth model of Z. rouxii, was obtained with maximum values of ${\mu}_m$ and $X_m$ at $0.326h^{-1}$ and 7.35% of dry matter weight loss, respectively. A goodfit model to describe utilization of total carbohydrate ($R^2$=0.9906) and nitrogen concentration ($R^2$=0.9869) with time was obtained. The model was used successfully to predict enzyme production ($R^2$=0.7950).

Isolation and Evaluation of Bacillus Strains for Industrial Production of 2,3-Butanediol

  • Song, Chan Woo;Rathnasingh, Chelladurai;Park, Jong Myoung;Lee, Julia;Song, Hyohak
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.409-417
    • /
    • 2018
  • Biologically produced 2,3-butanediol (2,3-BDO) has diverse industrial applications. In this study, schematic isolation and screening procedures were designed to obtain generally regarded as safe (GRAS) and efficient 2,3-BDO producers. Over 4,000 candidate strains were isolated by pretreatment and enrichment, and the isolated Bacillus strains were further screened by morphological, biochemical, and genomic analyses. The screened strains were then used to test the utilization of the most common carbon (glucose, xylose, fructose, sucrose) and nitrogen (yeast extract, corn steep liquor) sources for the economical production of 2,3-BDO. Two-stage fed-batch fermentation was finally carried out to enhance 2,3-BDO production. In consequence, a newly isolated Bacillus licheniformis GSC3102 strain produced 92.0 g/l of total 2,3-BDO with an overall productivity and yield of 1.40 g/l/h and 0.423 g/g glucose, respectively, using a cheap and abundant nitrogen source. These results strongly suggest that B. licheniformis, which is found widely in nature, can be used as a host strain for the industrial fermentative production of 2,3-BDO.

Alkaline $\alpha$-amylase Production from Bacillus megaterium

  • Jia, Shiru;Lim, Chae-kyu;Seo, Gwang-Yeob;Nam, Hyung-Gun
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.40-46
    • /
    • 2009
  • The enzyme expressed from strain L-49 was 2.01 times higher than that of original strain. Strain L-49 can grow on culture plate with $50{\mu}g/mL$ ampicillin. The synthesis of $\alpha$-amylase was greatly suppressed when strain L-49 was grown on monosaccharide such as glucose and polysaccharide at the same time cell concentration was low. Amylase production was enhanced when the bacterium was grown on starch and dextrin. Among different nitrogen sources tried, yeast extract was found to be the best followed by panpeptone, peptone, meat extract, bean meal, and corn steep liquor. The average rate of enzyme production was enhanced for 3~4 times in fermentation time from 24h to 44h. The sugar uptake rate has also increased. Low oxygen supply rate enhanced the rate of strain propagation but depressed the enzyme production. Hence it is benefit to obtain high enzyme activity that agitation speed maintained not lower than 400r/min and aeration rate maintained greater than 1:1vvm.

Isolation of Glucose Isomerase-Producing Microorganism, Streptomyces luteogriseus and Determination of Fermentation Conditions (포도당 이성화 효소 생산성 신균주 Streptomyces luteogriseus의 분리 및 발효 특성)

  • 홍승서;백진기;이현수;국승욱;박관화
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.296-302
    • /
    • 1991
  • Glucose isomerase producer, which produces 488 U/ml of glucose isomerase activity in 500 ml flask scale, was isolated among 666 isolates of Actinomycetes from pine forest soil samples. The isolate was identified as Streptomyces luteogriseus through the studies about morphology (spiral aerial mycelia), cell wall type (Type I), spore chains (spiral form), pigment formation (gray melanine pigment) & metabolism (sugar utilization etc). The optimum conditions of fermentation were determined in 500 ml flask scale. The enzyme production was reached maximum after 4 days at pH 6.0~8.0 and 27~$30^{\circ}C$ in the medium containing 1.5~3.0% of xylose; 0.5-0.8% of glucose; 0.1% of $MgSO_4.7H_20$; 0.05% of $CoCI_2-6H_20$; 7.5% of corn steep liquor.

  • PDF

Effect of Ethanol on the Production of Cellulose and Acetic Acid by Gluconacetobacter persimmonensis KJ145 (Gluconacetobacter persimmonensis KJ145를 이용한 Bacterial Cellulose 및 초산발효에 미치는 Ethanol의 영향)

  • 이오석;장세영;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.2
    • /
    • pp.181-184
    • /
    • 2003
  • We investigated the effect of ethanol on the production of cellulose and acetic acid fermentation by Gluconacetobacter persimmonensis KJ145. Results showed that bacterial cellulose productivity was highest when 2% ethyl alcohol was added to apple-juice medium. For acetic acid production, 7% ethyl alcohol was needed. Optimal concentration of ethyl alcohol was 5% for simultaneous production of bacterial cellulose and acetic acid. For simultaneous production of bacterial cellulose and acetic acid, optimal nitrogen source and optimal concentration were corn steep liquor and 15% (w/v), respectively Optimal culture time for simultaneous production of bacterial cellulose and acetic acid was 14 days. At the optimal condition, Cluconacetobacter persimmonenis KJ145 produced 7.55 g/L of bacterial cellulose (dry weight).

Commercial Production and Separation of Catalase Produced by Micrococcus sp.

  • Lee, Ho;Suh, Hyung-Joo;Yu, Hee-Jong;So, Sung;Oh, Sung-Hoon
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2002
  • A Micrococcus sp. producing catalase was isolated from soil, and a commercial-scathe cultivation and purification of catalase were conducted. The maximum catalase activity was about 103 BU/mL obtained after 46 hr of cultivation in a 30 L fermenter containing 2% glucose, 2% peptone, 4% yeast extract, and 0.5% NaCl. Soybean sauce, CSL (corn steep liquor), and yeast extract were also studied as media substitutes in the media 30 L fermenter. The optimum medium components for the production catalase were found to be 2% glucose, 4% soybean sauce, and 16% CSL. In a 18 kL fermenter, the stationary phase in the cell growth and maximum catalase activity (112 BU/mL) were reached after 46 hr of cultivation, which was the same result as in the 30 L fermenter. The catalase activity was purified with over 17 folds in four steps with a 33.6% yield. From 104,250 mg of protein after cell lysis, 1,966 mg of the purified enzyme with a specific activity of 192.7 kBU/mg was obtained. The residual activity with the addition of 10% NaCl exhibited more than 100%. The use of just NaCl produced a higher residual activity than combination of bencol (benzyldimethyl ammoniumchloride) and PG (propyleneglycol).

Studies on the Production of L-Glutamic Acid by Brevibacterium ammoniagenes (Brevibacterium ammoniagenes에 의한 글루탐산 제조에 관한 연구)

  • Yoo, Young-Jin;Kim, Taik-Yung
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1977
  • A bacterium strain (K-173-10) which was isolated from waste soil of Korea brewing factory, could be grown on acetate as the sole carbon source and accumulated a considerable amount of L-glutamic acid in the medium. This strain was identified as the new species Brevibacterium ammoniagenes. This study was concerned not only with the culture condition for the production of L-glutamic acid and the cell growth, but also with the effects on concentration of various kind of organic substances, growth factors and penicillin. The results obtained were summarized as follow; 1. It was found that the concentrations of acetate and ammonium ions affected the growth of the bacterium as well as its L-glutamate accumulation. The optimum conditions of the composition of grown media for the growth of the bacterium and its glutamic acid production was found to be 40 g/l of total acetate, $100\;{\mu}g/l$ thiamine, $0.5\;{\mu}g/l$ biotin and $1{\sim}2g/l$ corn steep liquor as the growth factors. 2. Organic acid such as succinic acid, malic acid and ${\alpha}-ketoglutaric$ acid inhibited the cell growth as well as its L-glutamic acid production. 3. The penicillin (20 units/ml) stimulated the production of glutamic acid at appropriate incubation period. 4. It was found that this strain could grow in the presence of urea and ammonium acetate but not in other nitrogen sources.

  • PDF