• 제목/요약/키워드: Coriolis Effect

검색결과 76건 처리시간 0.027초

항내(港內) 장주기파(長週期波) 해석(解析)을 위한 2차원(二次元) 부정류(不定流)의 수학적(數學的) 모형(模型) (A Mathematical Modeling of Two-Dimensional Unsteady Flow for Long Waves in a Harbor)

  • 이종태;이원환
    • 대한토목학회논문집
    • /
    • 제3권1호
    • /
    • pp.13-24
    • /
    • 1983
  • 장주기파(長週期波)에 의한 항내(港內)의 반응(反應)을 예측(豫測)하기 위하여 비선형(非線型) 편미분방정식(偏微分方程式)으로 표현(表現)되는 2차원(二次元) 부정류(不定流)의 운동방정식(運動方程式)과 연속방정식(連續方程式)을 확정(確定)하고, 이 식(式)들에 Abbott의 Implicit 형(型) 차분형(差分型)을 적용(適用)하여 유한(有限) 차분방정식(差分方程式)의 형태(形態)로 유도(誘導)한 후(後), double sweep 알고리즘에 의하여 해석(解析)하는 수학적(數學的) 모형(模型)을 개발(開發)하였다. 본(本) 모형(模型)은 임의(任意)의 파형(波形), 풍속(風速)과 수심(水深), 위도(緯度) 등(等)을 입력자료(入力資料)로 하여 임의(任意)의 지형(地形)을 가진 항내(港內)에서의 반응(反應)을 해석(解析)할 수 있도록 설계(設計)되었다. 특(特)히 파향(波向), 이송항(移送項), 항입구(港入口)로 되돌아 나오는 에너지의 방사현상(放射現象) 등(等)을 수치해석적(數値解析的)으로 처리(處理)하는 수법(手法)의 개발(開發)에 관(關)하여 연구(硏究)하였다. 본(本) 모형(模型)에 의한 해석결과치(解析結果値)는 1차원(次元) 및 2 차원(次元) 정진동(靜振動)(seiche) 수치실험(數値實驗)을 통(通)하여 검정(檢定)하였으며, Ippen과 Goda의 이론해석치(理論解析値) 및 실험결과치(實驗結果値)와 비교(比較)하였다.

  • PDF

90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향 (Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs)

  • 김경민;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (I) - 요철 설치에 따른 영향 - (Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (I) - Effects of Rib Tubulators -)

  • 김경민;김상인;김윤영;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.910-920
    • /
    • 2004
  • The heat/mass transfer characteristics in a rotating two-pass duct with and without rib turbulators are investigated in the present study. The square duct has a hydraulic diameter ($D_h$) of 26.7 mm, and $1.5\;mm{\times}1.5\;mm$ square $90^{\circ}$-rib turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The Reynolds number based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number is varied from 0.0 to 0.20. In the smooth duct, the curvature of the $180^{\circ}$-turn produces Dean vortices that enhance heat/mass transfer in the post-turn region. When rib turbulators are installed, heat/mass transfer is augmented 2.5 times higher than that of the smooth duct since the main flow is turbulated by reattaching and separating in the vicinity of the duct surfaces. The duct rotation results in heat/mass transfer discrepancy so that Sherwood number ratios are higher on the trailing surface in the first-pass and on the leading surface in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent heat/mass transfer characteristics also change. As the rotation number increases, the heat/mass transfer discrepancy enlarges.

터보 압축기 다단 회전축계의 진동 및 안정성 연구 (Vibration and Stability Analysis of a Multi-stepped Shaft System of Turbo Compressor)

  • 서정석;강성환;박상윤;안창기;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제24권8호
    • /
    • pp.583-591
    • /
    • 2014
  • The mathematical modeling on the free vibration and stability of a multi-stepped shaft of turbo compressor is performed in this study. The multi-stepped shaft is modeled as a non-uniform Timoshenko beam supported by anisotropic bearings. It is assumed that the shaft is spinning with constant speed about its longitudinal axis and subjected to a conservative axial force induced by front and rear impellers attached to the shaft. The structural model incorporates non-classical features such as transverse shear and rotary inertia. A structural coupling between vertical and lateral motions is induced by Coriolis acceleration terms. The governing equations are derived via Hamilton's variational principle and the equations are transformed to the standard form of an eigenvalue problem. The implications of combined gyroscopic effect, conservative axial force, bearing stiffness and damping are revealed and a number of pertinent conclusions are outlined. In this study analytical results are compared with those from ANSYS finite element analysis and experimental modal testing.

단락 요철이 설치된 내부 냉각유로에서 회전에 따른 열/물질전달 특성 연구 (Experimental Study of Heat/Mass Transfer in Rotating Cooling Passages with Discrete Ribs)

  • 김경민;김상인;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.590-598
    • /
    • 2005
  • The present study has been conducted to investigate the effect of discrete ribs and rotation on heat/mass transfer characteristics in a two-pass square duct with $90^{\circ}-rib$ turbulators. The rib turbulator has a square cross section of 1.5 mm. The rib height-to-hydraulic diameter ratio $({e/D_{h})$ is 0.056, and the rib pitch-to-rib height ratio (p/e) is 10. The gap width is the same as the rib height. The rotation number ranges from 0.0 to 0.2 while Reynolds number is fixed to 10,000. In a stationary duct, the heat/mass transfer on the surfaces with discrete ribs is enhanced because the gap flow promotes local turbulence and flow mixing near the ribbed surface. In a rotating duct, the gap flow affects differently the heat/mass transfer on leading and trailing surfaces with discrete ribs. On the leading surface of the first pass, heat/mass transfer is increased due to the gap flow. On the trailing surface of the first pass, however, heat/mass transfer is decreased because the gap flow disturbs reattachment of main flow. The phenomenon, that is, the difference of heat transfer between the leading and the trailing surfaces is distinctly presented by rotation.

SEASONAL VARIATION OF THE OCEANIC WATER INTRUSIONS INTO KAGOSHIMA BAY DERIVED FROM THE SATELLITE SST AND CHL-A IMAGES

  • Hosotani, Kazunori
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.61-64
    • /
    • 2008
  • Seasonal distribution of the oceanic water intrusion was investigated using satellite SST (sea surface temperature) and chl-a (chlorophyll-a) images taken by the MODIS Aqua sensor. The warm water mass emanating periodically from the meandering Kuroshio Current brings the oceanic water intrusion, known as the 'Kyucho' phenomenon, into Kagoshima bay during the winter. Satellite SST images and buoy robot data show that this warm water intrusion has the characteristics of a semigeostrophic gravity current influenced by the Coriolis effect. However, it is difficult to find the oceanic water intrusion during the summer season considering that it is accompanied by thermal stratification, and SST shows almost the same temperature between the inner side of the bay and the ocean. In this research, the satellite chl-a images taken by MODIS Aqua were employed instead of SST images to reveal the oceanic water intrusion in each season. The enclosed bay has the tendency to undergo eutrophication caused by organic materials from land and differences in chl-a concentration of the bay water and the oceanic water. As a result, distribution of low concentration chl-a with oceanic water intrusion in summer season shows almost the same pattern in winter season. On the other hand, in spring season, both SST and chl-a images are available to differentiate the oceanic water intrusion. Therefore, applying the suitable satellite sensor images for each season is effective in the monitoring of oceanic water intrusion. Moreover, in this area, SST and chl-a distribution reveal not only the oceanic water intrusion into Kagoshima bay but also the intrusion at Fukiage seashore facing East China Sea.

  • PDF

덕트 종횡비가 회전덕트 내 압력강하에 미치는 영향 (Effect of Duct Aspect Ratios on Pressure Drop in a Rotating Two-Pass Duct)

  • 김경민;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.505-513
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. Three ducts of different aspect ratios (W/H=0.5, 1.0 and 2.0) are employed with a fixed hydraulic diameter ($D_h$) of 26.7 mm. $90^{\circ}$-rib turbulators with $1.5mm{\times}1.5mm$ cross-section are attached on the leading and trailing surfaces. The pitch-to-rib height ratio (p/e) is 1.0. The distance between the tip of the divider and the outer wall of the duct is 1.0 W. The thickness of divider wall is 6.0 mm o. 0.225 $D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 and the .elation number (Ro) is varied from 0.0 to 0.2. As duct aspect ratio increases, high friction factor ratios show in overall regions. The reason is that the rib height-to-duct height ratio (e/H) increases, but the divider wall thickness-to-duct width ($t_d/W$) decreases. The rotation of duct produces pressure drop discrepancy between the leading and trailing surfaces. However, the pressure drop discrepancy of the high duct aspect ratio (AR=2.0) is smaller than that of the low duct aspect ratio (AR=0.5) due to the decrement of duct hight (H).

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.

점모형을 이용한 조류와 취송류의 비선형 상호작용 (A Study on Nonlinear Interaction of Tidal Current and Wind-Induced Current using a Point Model)

  • 이종찬;정경태
    • 한국해안해양공학회지
    • /
    • 제8권1호
    • /
    • pp.28-36
    • /
    • 1996
  • 조류와 취송류의 비선형 상호작용에 대한 연직확산계수의 영향을 점모형을 이용하여 살펴보았다. q$^2$-q$^2$1 난류모형을 난류운동에너지의 생성과 감쇄가 균형을 이룬다는 가정 하에 단순화한 0-방정식 난류모형을 도입하고 마찰수심의 영향을 적절히 반영하도록 수정하여 연직확산계수를 산정하였다. 0-방정식 난류모형의 유도과정과 전향력 항이 포함됨으로써 공진이 발생될 수 있음을 제시하였다. 왕복성 수면경사력과 바람응력이 복합된 경우, 고려된 바람응력에 의한 조류 진폭의 변화는 무시할만한 크기였으나, 왕복성 수면경사력만에 의해서는 발생되지 않았던 2배조의 조류 성분이 파생되었다. 취송류의 연직구조는 조류에 의한 배경난류가 지배적인지의 여부에 따라 상당한 차이를 보였다. 따라서 황해와 같이 강한 조류가 존재하는 해역의 취송순환을 파악함에 있어 조류에 의한 배경난류를 무시할 경우는 실제와는 상당히 다른 결과가 나타날 수 있다.

  • PDF

역감 제시 장치를 이용한 가상 과학 체험 공간 개발 (Development of Virtual Science Experience Space(VSES) using Haptic Device)

  • 김호정;류제하
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권11호
    • /
    • pp.1044-1053
    • /
    • 2003
  • 본 논문에서는 과학 교육 분야에서 기존의 교육방식이 갖고 있는 한계성을 극복하고 교육 및 학습 효과를 향상시키기 위한 방안으로 역감 제시 장치를 이용한 가상 현실 시스템을 제안한다. 제안된 시스템의 효용성과 응용가능성, 활용방법을 효과적으로 나타낼 수 있는 4가지 과학세계로 구성된 가상 과학 체험 공간을 구축하여 미시 세계에서는 원자간의 현상을, 마찰 세계에서는 스틱-슬립 마찰현상을, 기전 세계에서는 모터 및 발전기의 원리를, 거시 세계에서는 코리올리스 가속도로 인한 물리적 현상을 각 세계에서 역학적으로 모델링하고 역감 제시 장치와 인터페이스를 위한 에뮬레이션 기법을 고안한다. 그리고, 역감 제시 장치, HMD(Head Mounted Displays), 가상환경(스테레오 그래픽스와 GUI)을 포함한 디지털 제어기로 구성된 가상 과학 체험 시스템을 구축한다. 끝으로 본 연구를 통해 교육의 보조 매체와 학습의 도구로서 효율성을 극대화시키기 위한 가상 과학 체험 공간의 설계 및 구현에 관한 고려사항을 제시한다.