• Title/Summary/Keyword: Cores

Search Result 1,545, Processing Time 0.03 seconds

Automating the visual classification of metal cores (철분 코아(core) 자동 선별기)

  • 박인규;송경호;하태중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.302-307
    • /
    • 1990
  • An automatic visual classification system is introduced which provides for measuring the length and diameter of coilform cores and dividing them into 5 different classes in terms of how far their length be from the desired length. This task is fully automated by controlling two STEP motors and by using image processing techniques. The classification procedure is broken into three logical parts. Fist, cores in the form of randomly stacked bundle are lined up one by one so as to be well captured by a cameras. The second part involves capturing core image. Then, it enters the measuring process. Finally, this machine would retain all tire information relating to the length. According to the final result, cores are sent to the corresponding bin. This considerably simplifies the selecting task and facilitates a greatly improved reliability in precision. The average classifying capability about 2 pieces per second.

  • PDF

Measurements of Dynamic Properties of Rock Cores Using Free-Free Resonance Tests. (자유단 공진 시험을 이용한 암시편의 동적 물성치 측정)

  • 목영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.75-80
    • /
    • 1998
  • Dynamic measurements are used rather sparingly to determine the elastic moduli of rock cores and modulus values are not much utilized in design practices. The reason seems to result from the general perception that values obtained by dynamic measurement are much higher (about 10 time) than those determined statically. This paper presents results from dynamic and static tests on rock cores. One of the findings is that both moduli determined by statically and dynamically on a solid rock core agrees well at the same-strain. At different strain levels, the ratio between dynamic and static modult widely varies depending upon micro-cracks and discontinuites of rock cores.

  • PDF

Aging of Amorphous Fe-B-Si Wound Cores (Fe-B-Si 비정질 권철심의 경년 열화 연구)

  • 민복기;송재성;강영호;강원구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.432-436
    • /
    • 1994
  • The aging characteristics of amorphous FeS178TBS113TSiS19T wound cores have been investigated as a function of aging temperature and time. The core losses(1.2T/60Hz) of amorphous wound cores dipped in transformer oil decrease in comparision with initial stage of aging test due to insulation of ribbon stacks by oil penetration. It is estimated that it takes 30 years or more for 10% increase in core losses (1.2T/60Hz) of amorphous wound cores aged at normal transformer running temperature(100$^{\circ}C$). So we condlude that the amorphous core is satisfactorily applicable to transformer.

SOC Test Compression Scheme Sharing Free Variables in Embedded Deterministic Test Environment

  • Wang, Weizheng;Cai, Shuo;Xiang, Lingyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.397-403
    • /
    • 2015
  • This paper presents a new SOC test compression scheme in Embedded Deterministic Test (EDT) compression environment. Compressed test data is brought over the TAM from the tester to the cores in SOC and decompressed in the cores. The proposed scheme allows cores tested at the same time to share some test channels. By sharing free variables in these channels across test cubes of different cores decompressed at the same time, high encoding efficiency is achieved. Moreover, no excess control data is required in this scheme. The ability to reuse excess free variables eliminates the need for high precision in matching the number of test channels with the number of care bits for every core. Experimental results obtained for some SOC designs illustrate effectiveness of the proposed test application scheme.

Iron Loss Comparison between Soft Magnetic Composite Core and Laminated Steel Core in Axial Flux Machine (축방향 자속형 전동기에서 연자성복합체 코어와 적층 전기강판 코어의 철손 비교)

  • Lee, Minhyeok;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.217-218
    • /
    • 2015
  • Two axial flux permanent magnet (AFPM) machines using soft magnetic composite (SMC) and lamination steel are studied. Generally stator cores of AFPM machines are manufactured using SMC because AFPM machines need 3 dimensional core structures. However, SMC cores have very disadvantages in magnetic properties. Especially permeability value is much lower than that of lamination steel, so magnetic field density is also lower. In terms of core losses, SMC cores have much larger loss values than lamination steel cores because SMC core can't be laminated. In this study, AFPM machine was designed using laminated steel, and iron losses in two machines using SMC and laminated steel were studied. Simulations were carried out by a commercial 3-D FEM tool.

  • PDF

The effect of ferrite cores on the inductively coupled plasma driven at 13.56MHz (13.56MHz 유도 결합 플라즈마에서의 강자성체 페라이트 코어의 효과)

  • Lee, Won-Ki;Lee, Kyeong-Hyo;Chung, Chin-Wook
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.197-202
    • /
    • 2005
  • Due to high permeability of the ferrite core, the characteristics of the ICP are expected to be greatly improved. We investigated the effect of the ferrite cores on conventional inductively coupled plasma. It was observed that the current and voltage in ike ICP antenna are slightly decreased and the power transfer efficiency is increased. However, due to eddy current and hysterisis loss, plasma density in the ICP with the ferrite cores is not increased. It seems that the ICP with the ferrite cores at low frequency (${\~}$100kHz) will be greatly improved since the losses at the low frequency can be negligible.

  • PDF

MAGNETIC PROPERTIES OF FERRITE CORES UNDER DC-BIASED FIELD

  • Fukunaga, H.;Masumoto, S.;Ohta, Y.;Kakehashi, H.;Ogasawara, H.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.606-609
    • /
    • 1995
  • Ferrite cores are often magnetized under DC-biased field because they have been intensively used in electronic circuits such as an inverter circuit and a switching regulator circuit. Thus we investigated the effects of DC-biased field on magnetic properties in the frequency range of DC-100kHz for two kinds of ferrite cores, TDK PC38 and TDK $H_{3}S$, which have different shapes of B-H loop from each other. The magnetic loss per cycle, W/f, in the $H_{3}S$ core decreased with increasing the strength of DC-biased field, although W/f in the PC38 core increased monotonically with DC-biased field. The observed decreasing tendency differs from the previous result for Si-Fe and ferrite cores, and can be attributed to decrease in eddy current loss as well as that in hysteresis loss.

  • PDF

TRAO Survey of Nearby Filamentary Molecular Clouds, the Universal Nursery of Stars (TRAO FUNS). III. Dynamics of filaments in different star forming environments

  • Chung, Eun Jung;Kim, Shinyoung;Yoo, Hyunju;Lee, Chang Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.69.2-69.2
    • /
    • 2019
  • Recent high resolution IR observations reveal that molecular clouds are filamentary and such a structure is ubiquitous over various star-forming environments, and it is clear that filaments play a crucial role in the formation of cores and stars. However, the formation process of dense cores in the filaments are still unknown. To investigate this issue in detail, we have carried out TRAO FUNS (TRAO survey of nearby Filamentary molecular clouds, the Universal Nursery of Stars) toward various star forming filamentary molecular clouds. In this presentation, we will report the first look results of filaments and dense cores in MCLD 123.5+24.9 and IC 5146, which are known as a quiescent, non-star-forming region and an active, high-mass star forming region, respectively. By comparing the kinematic properties of filaments and dense cores in different star forming environments, we verified the formation scenario of filaments and dense core, i.e., gravoturbulent fragmentation via supersonic motions.

  • PDF

Minimum-Power Scheduling of Real-Time Parallel Tasks based on Load Balancing for Frequency-Sharing Multicore Processors (주파수 공유형 멀티코어 프로세서를 위한 부하균등화에 기반한 실시간 병렬 작업들의 최소 전력 스케줄링)

  • Lee, Wan Yeon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.6
    • /
    • pp.177-184
    • /
    • 2015
  • This paper proposes a minimum-power scheduling scheme of real-time parallel tasks while meeting deadlines of the real-time tasks on DVFS-enabled multicore processors. The proposed scheme first finds a floating number of processing cores to each task so that the computation load of all processing cores would be equalized. Next the scheme translates the found floating number of cores into a natural number of cores while maintaining the computation load of all cores unchanged, and allocates the translated natural number of cores to the execution of each task. The scheme is designed to minimize the power consumption of the frequency-sharing multicore processor operating with the same processing speed at an instant time. Evaluation shows that the scheme saves up to 38% power consumption of the previous method.

Multi-Core Fiber Based Fiber Bragg Gratings for Ground Based Instruments

  • Min, Seong-Sik;Lindley, Emma;Leon-Saval, Sergio;Lawrence, Jon;Bland-Hawthorn, Joss
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2015
  • Fiber Bragg gratings (FBGs) are the most compact and reliable method of suppressing atmospheric emission lines in the infrared for ground-based telescopes. It has been proved that real FBGs based filters were able to eliminate 63 bright sky lines with minimal interline losses in 2011 (GNOSIS). Inscribing FBGs on multi-core fibers offers advantages. Compared to arrays of individual SMFs, the multi-core fiber Bragg grating (MCFBG) is greatly reduced in size, resistant to damage, simple to fabricate, and easy to taper into a photonics lantern (PRAXIS). Multi-mode fibers should be used and the number of modes has to be large enough to capture a sufficient amount of light from the telescope. However, the fiber Bragg gratings can only be inscribed in the single-mode fiber. A photonic lantern bi-directionally converts multi-mode to single-mode. The number of cores in MCFBGs corresponds to the mode. For a writing system consisting of a single ultra-violet (UV) laser and phase mask, the standard writing method is insufficient to produce uniform MCFBGs due to the spatial variations of the field at each core within the fiber. Most significant technical challenges are consequences of the side-on illumination of the fiber. Firstly, the fiber cladding acts as a cylindrical lens, narrowing the incident beam as it passes through the air-cladding interface. Consequently, cores receive reduced or zero illumination, while the focusing induces variations in the power at those that are exposed. The second effect is the shadowing of the furthest cores by the cores nearest to the light source. Due to a higher refractive index of cores than the cladding, diffraction occurs at each core-cladding interface as well as cores absorb the light. As a result, any core that is located directly behind another in the beam path is underexposed or exposed to a distorted interference pattern from what phase mask originally generates. Technologies are discussed to overcome the problems and recent experimental results are presented as well as simulation results.

  • PDF