• Title/Summary/Keyword: Cores

Search Result 1,545, Processing Time 0.028 seconds

Implementation of Ethernet-Based High-Speed Data Communication for Multi-core DSP (멀티 코어 DSP를 위한 이더넷 기반 고속 데이터 통신 구현)

  • Nguyen, Dung Huy;Choi, Joon-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.185-190
    • /
    • 2022
  • We propose a high speed data communication method for motor drive systems with fast control cycle in order to collect state variables of motor control without degrading control performance. Ethernet is chosen for communication device, and multi-core DSP architecture is exploited for communication processing load distribution. The communication program including network protocol stack and motor control program are assigned to two separate cores, and data between two cores are exchanged using interrupt-based inter-process communication mechanism, which enables to achieve a high-speed communication performance without degrading the motor control performance. The performance of developed communication method is demonstrated by real experiments using TCP, UDP and Raw Socket protocols in an experimental setup consisting of TI's TMS320F28388D motor control card and MS Windows PC.

Influence of coating and annealing on the luminescence of Ga2O3 nanowires

  • Kim, Hyunsu;Jin, Changhyun;Lee, Chongmu;Ko, Taegyung;Lee, Sangmin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.59-63
    • /
    • 2012
  • Ga2O3-core/CdO-shell nanowires were synthesized by a two step process comprising thermal evaporation of GaN powders and sputter-deposition of CdO. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses revealed that the cores and the shells of the annealed coaxial nanowires were single crystal of monoclinic Ga2O3 and FCC CdO, respectively. As-synthesized Ga2O3 nanowires showed a broad emission band at approximately 460 nm in the blue region. The blue emission intensity of the Ga2O3 nanowires was slightly decreased by CdO coating, but it was significantly increased by subsequent thermal annealing in a reducing atmosphere. The major emission peak was also shifted from ~500 nm by annealing in a reducing atmosphere, which is attributed to the increases in the Cd interstitial and O vacancy concentrations in the cores.

KVN unveils the plasma physics of AGN

  • Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.51.3-51.3
    • /
    • 2019
  • Its ability to measure the polarization of light at four frequencies makes the KVN a "plasma physics observatory" that can probe the internal physics (e.g., magnetic fields, outflow geometries) of AGN radio jets and cores. We initiated a Key Science Program, the Plasma-physics of Active Galactic Nuclei (PAGaN) project, dedicated to polarimetric monitoring of 14 radio-bright AGN. We have been able to measure the Faraday rotation measure of the cores of our targets as function of frequency; the observed scaling relation is in good agreement with conically expanding outflows to first order. We are further probing a polarized hotspot in the jet of 3C84 and possible systematic differences in the Faraday rotation in BL Lacertae objects and flat spectrum radio quasars.

  • PDF

FEM-based Bayesian Optimization of Electromagnet Configuration for Enhancing Microrobot Actuation (마이크로 로봇 작동 성능 향상을 위한 FEM 기반의 전자석 배치 베이지안 최적화)

  • Hyeokjin Kweon;Donghoon Son
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2024
  • This paper introduces an approach to enhance the performance of magnetic manipulation systems for microrobot actuation. A variety of eight-electromagnet configurations have been proposed to date. The previous study revealed that achieving 5 degrees of freedom (5-DOF) control necessitates at least eight electromagnets without encountering workspace singularities. But so far, the research considering the influence of iron cores embedded in electromagnets has not been conducted. This paper offers a novel approach to optimizing electromagnet configurations that effectively consider the influence of iron cores. The proposed methodology integrates probabilistic optimization with finite element methods (FEM), using Bayesian Optimization (BO). The Bayesian optimization aims to optimize the worst-case magnetic force generation for enhancing the performance of magnetic manipulation system. The proposed simulation-based model achieves approximately 20% improvement compared to previous systems in terms of actuation performance. This study has the potential for enhancing magnetic manipulation systems for microrobot control, particularly in medical and microscale technology applications.

Nodal method for handling irregularly deformed geometries in hexagonal lattice cores

  • Seongchan Kim;Han Gyu Joo;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.772-784
    • /
    • 2024
  • The hexagonal nodal code RENUS has been enhanced to handle irregularly deformed hexagonal assemblies. The underlying RENUS methods involving triangle-based polynomial expansion nodal (T-PEN) and corner point balance (CPB) were extended in a way to use line and surface integrals of polynomials in a deformed hexagonal geometry. The nodal calculation is accelerated by the coarse mesh finite difference (CMFD) formulation extended to unstructured geometry. The accuracy of the unstructured nodal solution was evaluated for a group of 2D SFR core problems in which the assembly corner points are arbitrarily displaced. The RENUS results for the change in nuclear characteristics resulting from fuel deformation were compared with those of the reference McCARD Monte Carlo code. It turned out that the two solutions agree within 18 pcm in reactivity change and 0.46% in assembly power distribution change. These results demonstrate that the proposed unstructured nodal method can accurately model heterogeneous thermal expansion in hexagonal fueled cores.

Compressive Strength Properties of Small Diameter Core Concrete with Coarse Aggregate Particle Distribution (굵은 골재 입도분포에 따른 소구경 코어 콘크리트의 압축강도 특성)

  • Lee, Jin-Won;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.145-146
    • /
    • 2023
  • One of the causes of recent construction site collapses was that the compressive strength of concrete was less than half of the allowable design standard strength range. In the safety diagnosis of structures, the compressive strength of concrete is a factor that determines the durability of a building. Therefore, in this study, we aim to examine the characteristics of compressive strength according to the particle size distribution of coarse aggregate among the compressive strength factors using small-diameter cores. To avoid problems when collecting cores, core specimens with diameters of 100×200, 50×100, and 25×50 (mm) were manufactured directly. As a result of measuring the compressive strength of concrete for each diameter, the larger the core diameter, the higher the compressive strength. has increased.

  • PDF

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.