• 제목/요약/키워드: Cores

Search Result 1,538, Processing Time 0.028 seconds

Clinical presentation of a horse-derived biomaterial and its Biocompatibility: A Clinical Case Report

  • Koo, Ki-Tae;Park, Jang-Yeol;Park, Jun-Seok;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.287-291
    • /
    • 2009
  • Purpose: The objective of this clinical presentation was to present a clinical case series report of socket preservation, sinus augmentation, and bone grafting using a horse-derived biomaterial. Methods: A horse-derived biomaterial was used in 8 patients for different indications including socket preservation following tooth extraction, osseous bone grafting, and sinus augementation procedures. Surgeries were performed by a well trained specialist and clinical radiographs were obtained at designated intervals. Biopsy cores of 2 ${\times}$ 8 mm prior to implant placement was obtained following a healing interval of 4 - 6 months. A clinical and histologic evaluation was performed to evaluate the clinical effectiveness and biocompatibility of the biomaterial. Results: All surgeries in 8 patients were successful with uneventful healing except for one case with membrane exposure that eventually resulted with a positive outcome. Radiographic display of the healing phase during different intervals showed increased radiopacity of granular nature as the healing time increased. No signs of adverse effect or infection was observed clinically and the tissues surrounding the biomaterial seemed well-tolerated with good intentional healing. The augmented sinuses healed uneventfully suggesting in part, good biocompatibility of the biomaterial. Dental implants placed following socket preservation were inserted with high initial torque suggesting good initial stability and bone quality. Conclusions: Our results show that at least on a tentative level, a horse-derived biomaterial may be used clinically in socket preservation, sinus augmentation, bone grafting techniques with good intentional healing and positive results.

Parallel Cell-Connectivity Information Extraction Algorithm for Ray-casting on Unstructured Grid Data (비정렬 격자에 대한 광선 투사를 위한 셀 사이 연결정보 추출 병렬처리 알고리즘)

  • Lee, Jihun;Kim, Duksu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • We present a novel multi-core CPU based parallel algorithm for the cell-connectivity information extraction algorithm, which is one of the preprocessing steps for volume rendering of unstructured grid data. We first check the synchronization issues when parallelizing the prior serial algorithm naively. Then, we propose a 3-step parallel algorithm that achieves high parallelization efficiency by removing synchronization in each step. Also, our 3-step algorithm improves the cache utilization efficiency by increasing the spatial locality for the duplicated triangle test process, which is the core operation of building cell-connectivity information. We further improve the efficiency of our parallel algorithm by employing a memory pool for each thread. To check the benefit of our approach, we implemented our method on a system consisting of two octa-core CPUs and measured the performance. As a result, our method shows continuous performance improvement as we add threads. Also, it achieves up to 82.9 times higher performance compared with the prior serial algorithm when we use thirty-two threads (sixteen physical cores). These results demonstrate the high parallelization efficiency and high cache utilization efficiency of our method. Also, it validates the suitability of our algorithm for large-scale unstructured data.

Inherent Strength Anisotropy of the Shale in Daegu Region (대구지역 셰일 압축강도의 고유이방성에 관한 연구)

  • Lee, Younghuy;Kim, Heedong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.45-51
    • /
    • 2008
  • Triaxial compression tests on anisotropic rock specimens are carried out to investigate the failure strength characteristic of anisotropic rocks. The test core specimens were obtained in Daegu region. Test specimens are rock cores with the 7 different angles of bedding plane. The applied confining pressures were 5, 10, 20, 30, 40 MPa, and the rate of displacement was adopted 0.1%/min to fail the specimen within 5-15 min. The results were analyzed by using the failure criteria for anisotropic rocks proposed by Hoek & Brown (1980) and Jaeger (1960). The results of this study are summerised as follows: The results of inherent anisotropy show the shoulder type of anisotropy, and the effect of anisotropy is reduced as the confining pressure increases. The compressive strength of anisotropic rock shows the highest value at the ${\beta}$ (the angle of bedding plane) = $0^{\circ}$ and $90^{\circ}$ and the lowest value at $30^{\circ}$. The Hoek & Brown failure criterion for anisotropic rocks gives a relatively good agreement with the measured strength in all the range of ${\beta}$ angles, but the theory of Jaeger shows a reasonable agreement only in the range of ${\beta}=15^{\circ}$ and $45^{\circ}$.

  • PDF

MARGINAL FIT OF GLASS INFILTRATED ALUMINA CORE FABRICATED FROM ALUMINA TAPES (알루미나 테이프를 사용한 유리 침투형 알루미나 코아의 변연적합도)

  • Oh, Nam-Sik;Lee, Myung-Hyun;Kim, Dae-Joon;Lee, Keun-Woo;Lee, Sun-Hyeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.6
    • /
    • pp.832-845
    • /
    • 1998
  • The purpose of this study was to compare the marginal fit of all ceramic crowns prepared from alumina slip casting, which is consistent with the conventional In-ceram system, and those fabricated from alumina tapes which is currently under development in an effort to alleviate complexities involved in the forming procedure of the In-ceram crown core. All ceramic crowns, made of In-ceram(slip casting) and alumina tapes(Doctor blade casting), were prepared with $90^{\circ}\;and\;135^{\circ}$ shoulder margins. The crowns were cemented with a glass ionomer cement and embeded in epoxy resin. The embedded crowns were sectioned faciolingually and mesiodistally and marginal discrepancies and marginal gaps were measured under the Measurescope MM II. The measurements were analyzed using Wilcoxon rank sum test and Kruskal-Wallis test and the results were as follows: 1. In the case of $90^{\circ}$ shoulder margin, the combined marginal discrepancies and marginal gaps were $78.3{\mu}m\;and\;44.4{\mu}m$ respectively, for the all ceramic crowns fabricated using the alumina tapes. In comparison, the values were $65{\mu}m\;and\;25.5{\mu}m$ for the In-ceram crowns. For the marginal gaps a statistical difference existed (p<0.05) but no significant difference was observed for the marginal discrepancy (p>0.05). 2. In the case of $135^{\circ}$ shoulder margin, the combined marginal discrepancy and marginal gaps were $82.1{\mu}m\;and\;40.2{\mu}m$ respectively, for the all ceramic crowns formed with the tapes. As compared with the marginal discrepancy and gaps of the $90^{\circ}$ shoulder margin in the fabricated from the alumina tapes, no significant statistical differencies were discerned in both cases (p>0.05). 3. There was no statistically significant difference in the fits among four locations around the margins of the all ceramic crowns fabricated using the alumina tapes. The results obtained in this study showed that the marginal fits of the glass infiltrated alumina cores fabricated from the alumina tapes are slightly higher value than those prepared using the In-ceram but the difference is within a clinically acceptable range.

  • PDF

THE FRACTURE CHARACTERISTICS OF GLASS FIBER POST AND CORE ON USING DIFFERENT TYPES OF CORE RESIN MATERIALS

  • Shim Dong-Wook;Shim June-Sung;Lee Seok-Hyung;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.280-293
    • /
    • 2004
  • Statement of problem. Glass fiber post is one of recent developments to accommodate esthetic restoration for endodontically treated teeth. This has many advantages over conventional post system in physical properties, esthetic factor, risk of root and restoration fracture, adhesion to core, radiopacity, removal and retrievabilty, biocompatibility and chemical stability. Purpose. This in vitro study was to evaluate the most suitable type of resin core for the glass fiber post through surveying the fracture modes and the maximum load that fractures the tooth. Material and methods. 50 sound maxillary premolars restored with glass fiber posts($ParaPost^{(R)}$ Fiber White) and different types of resin cores(ParaCore, $Z100^{TM}$, $Rebilda^{(R)}$ and $Admira^{(R)}$) were prepared and loaded to faiure in a universal test machine. The maximum fracture load and fracture mode were investigated in the specimens that were restored with resin and those of metal cast and core. With the data, Wilcoxon rank sum test was used to validate the significance between the test groups, and Tukey' s studentized range test was used to check if there is any significant statistical difference between each test group. Every analysis was approved with 95% reliance. Results. On measuring the maximum fracture load of teeth specimens, there was a significant difference between the maximum fracture loads of the tooth specimens. ParaCore showed the highest mean maximum fracture load followed by $Z100^{TM}$. And, the distribution of fracture mode of tooth specimens showed generally Type D, the three parted fracture of the core around the post was mostly seen(62.5%), and specifically, ParaCore showed 90% and $Z100^{TM}$ showed 100% Type D fracture. Conclusion. Referring to the values of maximum fracture load and mean compressive fracture load, ParaCore and $Z100^{TM}$ had high values and are recommended as tooth colored resin core material for glass fiber post. CLINICAL IMPLICATIONS. This study was carried out intending to be of aid in selecting the appropriate resin core for the glass fiber post. The dual cure type composite resin ParaCore and light cure type composite resin $Z100^{TM}$ have good properties and are recommended as tooth colored resin core material for glass fiber post.

Shear bond strength of veneering porcelain to zirconia and metal cores

  • Choi, Bu-Kyung;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2009
  • STATEMENT OF PROBLEM. Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material's clinical use. PURPOSE. The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy). MATERIAL AND METHODS. 15 rectangular ($4\times4\times9mm$) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the oneway ANOVA and the Tukey's test ($\alpha$= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern. RESULTS. The mean shear strength ($\pm\;SD$) in MPa was 25.43 ($\pm\;3.12$) in the zirconia group, 35.87 ($\pm\;4.23$) in the base metal group, 38.00 ($\pm\;5.23$) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey' s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core. CONCLUSION. There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.

Winning Coalition, Expansion of Wealth, and Naval Power (승자연합과 부(富)의 확장, 그리고 해군력)

  • Park, Ju-Hyeon
    • Strategy21
    • /
    • s.41
    • /
    • pp.174-207
    • /
    • 2017
  • Human history shows diverse strategies for survival and prosperity. This study introduces the concept of the expansion of wealth as a key to explain choice and behavior of political entities. American scholar, -Bruce Bueno de Mesquita-, offers theoretical grounds for this concept in that the cores of selectorate theory is settled. The political entity consists of two groups, -the winning coalition that has power to replace leader and non-winning coalition that has not. Leaders implement policies serving for the welfare of winning coalition in return for their loyalty. Both internal problems caused by demographic changes and external ones of climate changes, epidemic disease, or invasion compel leader and winning coalition to adopt policies of expansion that they believe may lead to the acquisition of wealth needed to counter those problems. The process starts by occupying one spot where other entities reside and then connecting it to its own. The line between spots functions as a foothold to form a new line to other spots. By repeating this process, a space is created in which new laws and orders are instated. In the early stage of expansion, war is hardly avoidable. Once finished successfully, the political circumstance tilts to encourage economic activities in order to generate national revenues to strengthen political power of winning coalition. However, as scale of economic activities grows, so does political power of civic classes in production and trade. To gain financial support required to run the political entity, delegation of power or bestowing autonomy to non-winning coalition is inevitable. Thus, expansion is not the ultimate solution, only to prolong the political survival if succeed. Maritime power came to attractive option when overland expansion had become obstructed. It offered much greater advantages in terms of political risks and financial burdens in exploring new regions of precious commodities than overland expansion. Each political entity around world have been, for the first time in human history, connected by maritime means since 15th century. It is worthy of noting that land conditions propelled people out to sea. Political and economic situations created opportunities to exploit geographical position in pursuit of wealth. In the 21st century, we witness the operation of international winning coalition that presides over the rules of expansion. Competing for market is synonymous to the expansion in this era, the cause and aim of it has not been changed though. Energy and dollars are key factors of expansion since the end of the 2nd world war. No matter what the forms and conditions change, naval power is still the most relevant means for expansion as it retains unique characters of maneuver, flexibility, continuity, display and projection of power. The strategy for using naval power should be in line with two different approaches for expansion: Approaches to the international winning coalition by making contribution to world order, and approaches to the non-international winning coalition by enhancing military diplomatic activities. The former will serve our share of winning coalition while the latter will open chances to acquire further prosperity.

A Study on the Strength Properties and the Temperature Curve of Winter Concrete According to the Difference of Curing Method in Mock-up Test (실물부재시험에서의 양생방법 차이에 따른 한중콘크리트외 온도이력 및 강도특성에 관한 연구)

  • Kim, Young-Jin;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.541-548
    • /
    • 2003
  • This study is to investigate the temperature curve and development of compressive strength due to the curing conditions and to evaluate the optimum curing condition of test specimens showing the same development of strength to that of real structures in cold weather. The results of temperature curve with curing conditions in mock-up tests showed the trend of decrease plain concrete with insulation form, plain concrete with heating, concrete with accelerator for freeze protection, and control concrete in turn. The strength development of plain concrete of inside and outside of shelter showed the very slow strength gains due to early freezing, but that of concrete with accelerator for freeze protection showed the gradual increase of strength with time. From this, it is clear that accelerator for freeze protection has the effects of reducing the freezing temperature and accelerating the hardening under low temperature. Strength test results of small specimens embedded in members and located in insulation boxes at the site are similar to that of cores drilled from the members at the same ages, thus it is clear that these curing methods are effective for evaluation in-place concrete strength.

Effect of modeling liquid on the shear-bond strength of zirconia core - porcelain veneer (도재 전용액이 지르코니아 코어-도재 비니어의 전단결합강도에 미치는 영향)

  • Choi, Byung-Hwan;Kim, Im-Sun
    • Journal of Technologic Dentistry
    • /
    • v.36 no.2
    • /
    • pp.83-89
    • /
    • 2014
  • Purpose: This study is to evaluate the effect of modeling liquid on the shear-bond strength between zirconia core and veneering ceramic. Methods: Disk-shaped (diameter: 12.0mm; height: 3.0mm) zirconia were randomly divided into six groups according to the surface conditioning method and whether modeling liquid is used or not to be applied (N=60, n=10 per group): group 1-control group with distilled water(ZD); group 2-control group with modeling liquid(ZM); group 3-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$(AD) with distilled water; group 4-airborne particle abrasion with $110-{\mu}m$ $Al_2O_3$ with modeling liquid(AM); group 5-liner with distilled water(LD); group $6{\pounds}{\neq}liner$ with modeling liquid(LM). Contact angles were determined by the sessile drop method at room temperature using a contact angle measurement apparatus. The specimens were prepared using dentin veneering ceramics, veneered, 3mm high and 2.8mm in diameter, over the cores. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50mm/min until failure. The fractured zirconia surfaces were evaluated by using stereomicroscope (${\times}30$). Collected data were analyzed using SPSS(Statistical Package for Social Sciences) Win 12.0 statistics program. Results: ZD showed the highest contact angle($50.6{\pm}5.4^{\circ}$) and LD showed the lowest value($6.7{\pm}1.3^{\circ}$). Control groups and zirconia liner groups were significantly higher contact angle than liner groups(p<0.05). LD was the highest shear bond strength($43.9{\pm}3.8MPa$) and ZD was the lowest shear bond strength($24.8{\pm}4.9MPa$). Shear bond strengths of control groups and contact angle of liner groups were not significantly different((p>0.05). Liner groups presented adhesive failures. The others groups showed cohesive and adhesive failures. Conclusion: Modeling liquid groups showed lower contact angles and lower shear bond strength compared to those of distilled water groups.

A Development of Fusion Processor Architecture for Efficient Main Memory Access in CPU-GPU Environment (CPU-GPU환경에서 효율적인 메인메모리 접근을 위한 융합 프로세서 구조 개발)

  • Park, Hyun-Moon;Kwon, Jin-San;Hwang, Tae-Ho;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • The HSA resolves an old problem with existing CPU and GPU architectures by allowing both units to directly access each other's memory pools via unified virtual memory. In a physically realized system, however, frequent data exchanges between CPU and GPU for a virtual memory block result bottlenecks and coherence request overheads. In this paper, we propose Fusion Processor Architecture for efficient access of main memory from both CPU and GPU. It consists of Job Manager, Re-mapper, and Pre-fetcher to control, organize, and distribute work loads and working areas for GPU cores. These components help on reducing memory exchanges between the two processors and improving overall efficiency by eliminating faulty page table requests. To verify proposed algorithm architectures, we develop an emulator based on QEMU, and compare several architectures such as CUDA(Compute Unified Device Architecture), OpenMP, OpenCL. As a result, Proposed fusion processor architectures show 198% faster than others by removing unnecessary memory copies and cache-miss overheads.