• Title/Summary/Keyword: Core-Journal

Search Result 16,575, Processing Time 0.038 seconds

Comparison Between Direct- and Indirect-Cooling Core Catchers (직접냉각방식 및 간접냉각방식 Core Catcher의 성능비교)

  • Suh, Jung-Soo;Lee, Jong-Ho;Bae, Byung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1043-1047
    • /
    • 2012
  • The European nuclear design requirements, which should be satisfied by nuclear reactors in Europe, usually recommend a so-called core catcher, which is a molten core ex-vessel cooling facility, to manage a severe accident at a nuclear reactor. Two different types of core catcher concepts are compared to determine their abilities to manage severe accidents and cool core melts. The study reveals that direct cooling is better for cooling capacity and is convenient to construct, while indirect cooing is better for the management of a severe accident.

Interfacial Electric Property of PVA/PVAc Particles (PVA/PVAc 입자의 계면 전기적 성질)

  • Lee, Ha-Na;Lee, Jae-Woong;Kim, Ji-Young;Lee, Won-Chul;Kim, Sam-Soo
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.8-17
    • /
    • 2008
  • Poly (vinyl acetate) (PVAc) was used as a precursor of PVA/PVAc (skin/core) bicomponent. In order to investigate the possibility of PVA particles for electrical applications, PVA/PVAc particles were produced with an emulsifier, SDS (Sodium Dodecyl Sulfate) and an initiator, V-50 (2,2'-azobis(2-amidinopropane)digydrochloride). In this study, we investigated the electrical property of PVA/PVAc (skin/core) particles. The hydroxyl group of the PVA/PVAc (skin./core) was confirmed by the analysis of PVAc and PVA/PVAc (skin/core) using Fourier Transform Infrared Spectroscopy (FT-IR). The zeta-potential of the PVA/PVAc (skin/core) and PVAc has similarity; however, charge control agent (CCA) treated PVA/PVAc (skin/core) particles has lower zeta-potential than untreated PVA/PVAc particles. The zeta-potential (negative values) of the PVA/PVAc (skin/core) were enhanced in proportion to the increased concentration of CCA.

A Study on the Core Noise Reduction Techniques of Power Transformers (전력용 변압기 철심소음 저감기술에 관한 연구)

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Cho, Ik-Choon;Kim, Yoo-Hyun;Kim, Yung-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1962-1969
    • /
    • 2008
  • According to the increase of power demand and expansion of downtown, it is necessary to install transformers additionally in operating substations and construct substations in residential area. But the public complaint is increased due to the transformer noise of the substation. KEPCO has used a vibration preventing pad, various soundproof walls and an encloser to transformers in outdoor substations, and a soundproof door, shutter and wind-path soundproof equipment in indoor substations to block the sound propagation of the transformers. But these noise reduction methods are not satisfied. It should be considered to reduce transformer noise itself. In this paper, we investigated core noise reduction techniques to develope a low noise transformer. The techniques to reduce core noise of the transformer are application of high permeability grain oriented silicon sheets, decrease of magnetic flux density of core, application of 6step-lap core stacking method, improvement of core binding method(binding addition, band fixing) and application of rubber damper in oder to reduce transmission of core vibration, etc.

Compensating Algorithm for the Secondary Current of a Measurement CT Considering the Hysteresis Characteristics of the Core (히스테리시스 특성을 고려한 측정용 변류기 2차 전류 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun;So, Soon-Hong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1709-1714
    • /
    • 2007
  • This paper proposes a compensating algorithm for the secondary current of the measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error between the primary current and the secondary current of the measurement CT. The exciting current can be decomposed into the magnetizing current and the core loss current. The core loss current is obtained from the measured secondary current and the core loss resistance. The core flux linkage is calculated by integrating the measured secondary current, and then inserted into the flux-magnetizing current curve to obtain the magnetizing current. The exciting current at every sampling interval is obtained by summing the core-loss and magnetizing currents and then added to the measured current to obtain the correct current. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the measurement CT.

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core

  • Sudhakar, V;Gopalkrishnan, S;Vijayaraju, K
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.657-678
    • /
    • 2018
  • Sandwich structures are well known for their use in aircraft, naval and automobile industries due to their high strength resistance with light weight and high energy absorption capability. Sandwich beams with soft core are very common and simple structures that are employed in day to day general use appliances. Modeling and analysis of sandwich structures is not straight forward due to the interactions between core and face sheets. In this paper, formulation of Super Convergent finite elements for analysis of the sandwich beams with soft core based on Euler Bernoulli beam theory are presented. Two elements, Eul4d with 4 degrees of freedom assuming rigid core in transverse direction and Eul10d with 10 degrees of freedom assuming the flexible core were developed are presented. The formulation considers the top, bottom face sheets and core as separate entities and are coupled by beam kinematics. The performance of these elements are validated by results available in the published literature. Number of studies are performed using the formulated elements in static, free vibration and wave propagation analysis involving various boundary and loading conditions. The paper highlights the advantages of the elements developed over the traditional elements for modeling of sandwich beams and, in particular wave propagation analysis.

Symbiotic Framework for Campus Core and Modern Expansion A Case Study of Princeton University Campus, Princeton USA

  • Han, Gwang Ya;Kim, Hong Ill;Lee, Hee Won;Kim, Hwan
    • Architectural research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2006
  • Campus core is an essential element in a university's physical environment for symbolic importance of high educational philosophy as well as hierarchical significance of campus structure. Yet, as modern expansion develops into and out of campus core, a challenging design and planning problem for a growing university is how to integrate a new development into the existing core structure and how to expand the fast-growing development beyond the core while maintaining a symbiotic harmony between the campus core and the modern expansion. Such challenge addresses four design frameworks for symbiotic development of the campus core and the modern expansion: (1) building grouping with territorial proximity; (2) building design rules for form and texture; (3) open space network with pedestrian walkway; (4) use-programming for on-campus student community. This study aims to explore these issues with in-depth case study of the Princeton University campus in Princeton, New Jersey in the United States. The study concludes that the Princeton campus is a result from successful synthesis of all the complex design elements, especially in relationship between the old and the new; and adds further that the development of a modern university campus requires a comprehensive plan that takes into account the older buildings when conceiving the new in symbiotic relationship along with open space network as well as functional program distribution.

Conceptual Core Design of 1300MWe Reactor for Soluble Boron Free Operation Using a New Fuel Concept

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.391-400
    • /
    • 1999
  • A conceptual core design of the 1,300MWe KNGR (Korean Next Generation Reactor) without using soluble boron for reactivity control was developed to determine whether it is technically feasible to implement SBF (Soluble Boron Free) operation. Based on the borated KNGR core design, the fuel assembly and control rod configuration were modified for extensive use of burnable poison rods and control rods. A new fuel rod, in which Pu-238 had been substituted for a small amount of U-238 in fuel composition, was introduced to assist the reactivity control by burnable poison rods. Since Pu-238 has a considerably large thermal neutron capture cross section, the new fuel assembly showed good reactivity suppression capability throughout the entire cycle turnup, especially at BOC (Beginning of Cycle). Moreover, relatively uniform control of power distribution was possible since the new fuel assemblies were loaded throughout the core. In this study, core excess reactivity was limited to 2.0 %$\delta$$\rho$ for the minimal use of control rods. The analysis results of the SBF KNGR core showed that axial power distribution control can be achieved by using the simplest zoning scheme of the fuel assembly Furthermore, the sufficient shutdown margin and the stability against axial xenon oscillations were secured in this SBF core. It is, therefore, concluded that a SBF operation is technically feasible for a large sized LWR (Light Water Reactor).

  • PDF

Electromotive Force Characteristics of Current Transformer According to the Magnetic Properties of Ferromagnetic Core

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2015
  • The most common structure of the current transformer (CT) consists of a length of wire wrapped many times around a silicon steel ring passed over the circuit being measured. Therefore, the primary circuit of CT consists of a single turn of the conductor, with a secondary circuit of many tens or hundreds of turns. The primary winding may be a permanent part of the current transformer, with a heavy copper bar to carry the current through the magnetic core. However, when the large current flows into a wire, it is difficult to measure its magnitude of current because the core is saturated and the core shows magnetic nonlinear characteristics. Therefore, we proposed a newly designed CT which has an air gap in the core to decrease the generated magnetic flux. Adding the air gap in the magnetic path increases the total magnetic reluctance against the same magnetic motive force (MMF). Using a ferrite core instead of steel also causes the generation of low magnetic flux. These features can protect the magnetic saturation of the CT core compared with the steel core. This technique can help the design of the CT to obtain a special shape and size.

Zero Sequence Impedance of Yg-Yg Three Phase Core Type Transformer (Yg-Yg 3상 내철형 변압기의 영상분 임피던스 분석)

  • Jo, Hyunsik;Cho, Sungwoo;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.940-945
    • /
    • 2016
  • In this paper, zero sequence equivalent circuit of Yg-Yg three phase core-type transformer is analyzed. Many problems by iron core structure of the three phase transformer due to asymmetric three phase lines, which includes line disconnection, ground fault, COS OFF, and unbalanced load are reported in the distribution system. To verify a feasibility of zero sequence impedance of Yg-Yg type three phase transformer, fault current generation in the three phase core and shell-type Yg-Yg transformer is compared by PSCAD/EMTDC when single line ground fault is occurred. As a result, shell-type transformer does not affect the flow of fault current, but core-type transformer generate an adverse effect by the zero sequence impedance. The adverse effect is explained by the zero sequence equivalent circuit of core-type transformer and Yg-Yg type three phase core-type transformer supplies a zero sequence fault current to the distribution system.