• Title/Summary/Keyword: Core wall thickness

Search Result 62, Processing Time 0.03 seconds

Cracking Behavior of Containment Wall of Nuclear Power Plant Reactor (원자력 발전소 격납건물 벽체의 균열거동)

  • Cho, Jae-Yeol;Kim, Nam-Sik;Cho, Nam-So;Choi, In-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • Tension tests of six half-thickness concrete containment wall elements were conducted as a part of Korea Atomic Energy Research Institute (KAERI) program. The aim of the KAERI test program is to provide a test-verified analytical method for estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The data from the tests reported herein should be useful for benchmarking analytical method that require modeling of material behavior including concrete cracking behavior and reinforcement/concrete interaction exhibited by the test. Major test variable is compressive strength of concrete, and its effect on the behavior of prestressed concrete panel subjected to biaxial tension is investigated.

Manufacture of Wood Veneer-Bamboo Zephyr Composite Board - I. Properties of Bamboo Zephyr and Composite Board Made from Moso, Giant Timber and Hachiku Bamboo -

  • Roh, Jeang Kwan;Kim, Jae Kyung;Kim, Sa Ick;Ra, Jong Bum;Kim, Yu Jung;Park, Sang Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.42-51
    • /
    • 2004
  • Wood veneer-bamboo zephyr composite board (WBCB) was manufactured to evaluate the properties of bamboo as alternative raw materials for the manufacture of composite panels. Bamboo zephyr was prepared using Moso bamboo (Phyllostachys pubesens Mazel. et Z), Giant timber bamboo (Phyllostachys bambusoides Sieb. et Zucc), and Hachiku bamboo (Phyllostachys nigra var. henosos Stapf). The effect of age and species of bamboo on zephyr production was investigated in terms of the pass number of bamboo split through the rollers, and the width increasing rate of bamboo split. Five-ply WBCBs were produced with Keruing veneers as face and back layers, leading to three layers of bamboo zephyr sheets as core layer. Each layer was placed so that its grain direction was at right angles to that of the adjacent layer and the layers were bonded together with phenol-formaldehyde (PF) resin.The pass number of bamboo split was increased with an increase of the thickness of culm wall. At the same thickness, Moso bamboo showed no effect of the age of bamboo on the pass number. The pass number of split of Giant timber bamboo was lower than that of Moso bamboo. No significant effect of bamboo species and age on the width of zephyr produced was observed. The width of zephyr obtained could be expressed as a function of diameter multiplied by thickness of culm wall. The physical and mechanical properties of WBCB manufactured in all given conditions did not show any significant differences, and they were above the requirement of Korean Standard (KS).

Study on Bending and Shear Strength Setting of Full-scale Model Additional Walls for Additional Wall Test Bed Combined with PHC-W Pile Retaining Wall (PHC-W말뚝 흙막이와 결합된 지하증설벽체 테스트베드 구축을 위한 실대형 지하증설벽체의 휨강도 및 전단강도 설정 연구)

  • Woo, Jong Youl;Yoo, Choong Geon;Kim, Sung Su;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.7-17
    • /
    • 2018
  • Test bed additional wall combined with PHC-W pile retaining wall has been constructed. To determine the dimensions of test bed additional wall, bending and shear tests of full scale core members of additional wall were tested. Basement additional walls utilizing PHC-W pile retaining wall, which were developed by modifying the cross-section of PHC piles, were classified into the composite additional wall and the non-composite additional wall. Their tests were conducted to obtain bending strength and shear strength of basement additional walls ultilizing PHC-W pile retaining wall. Since bending strengths and shear strengths of the composite additional wall and the non-composite additional wall were similar, it could be confirmed that the non-composite additional wall could be applied instead of the composite additional wall. Full-scale model additional wall was 200 mm thick, thus the thickness of additional wall combined with PHC-W pile retaining wall could be reduced by 100~200 mm.

Nano-Structure Control of SiC Hollow Fiber Prepared from Polycarbosilane (폴리카보실란으로부터 제조된 탄화규소 중공사의 미세구조제어)

  • Shin, Dong-Geun;Kong, Eun-Bae;Cho, Kwang-Youn;Kwon, Woo-Tek;Kim, Younghee;Kim, Soo-Ryong;Hong, Jun-Sung;Riu, Doh-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • SiC hollow fiber was fabricated by curing, dissolution and sintering of Al-PCS fiber, which was melt spun the polyaluminocarbosilane. Al-PCS fiber was thermally oxidized and dissolved in toluene to remove the unoxidized area, the core of the cured fiber. The wall thickness ($t_{wall}$) of Al-PCS fiber was monotonically increased with an increasing oxidation curing time. The Al-PCS hollow fiber was heat-treated at the temperature between 1200 and $2000^{\circ}C$ to make a SiC hollow fibers having porous structure on the fiber wall. The pore size of the fiber wall was increased with the sintering temperature due to the decomposition of the amorphous $SiC_xO_y$ matrix and the growth of ${\beta}$-SiC in the matrix. At $1400^{\circ}C$, a nano porous wall with a high specific surface area was obtained. However, nano pores grew with the grain growth after the thermal decomposition of the amorphous matrix. This type of SiC hollow fibers are expected to be used as a substrate for a gas separation membrane.

Variations in lateral abdominal muscle thickness during abdominal drawing-in maneuver in three positions in a young healthy population

  • Ko, Young Jun;Ha, Hyun Geun;Jeong, Juri;Lee, Wan Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.2
    • /
    • pp.101-106
    • /
    • 2014
  • Objective: To investigate the appropriate position for abdominal drawing-in maneuver (ADIM) exercise by rehabilitative ultrasound image. Design: Cross-sectional study. Methods: Twenty-eight young adults with no history of low back pain participated in the study. Three positions compared were crook lying position with hip $60^{\circ}$ flexion, standing position with the feet hip width apart and knees straight, and saddle standing positionunsupported with the knees $20^{\circ}$ flexed. Once in the appropriate position, the subjects were verbally cued to draw in their abdominal wall, with the intention of pulling their navel inward toward their lower back. The thickness of each transversus abdominis (TrA), internal oblique (IO), and external oblique (EO) muscles were measured via ultrasound and recorded at the end of inspiration. Results: When compared to the TrA thickness of rest, the TrA thickness was significantly increased in all three positions (crook lying, standing, and saddle standing) during the ADIM (p<0.05). IO thickness was significantly greater in standing and saddle standing than in crook lying (p<0.05). EO thickness was constant in all the three positions. Conclusions: The present study suggests that standing and saddle standing positions could be recommended for the ADIM to maximize recruitment of the TrA and IO activation. Specifically, the saddle standing position with knees flexed to $20^{\circ}$ was observed to increase the TrA activation more than the standing position. These findings should be considered when core stability exercises such as the ADIM are conducted.

Structural Integrity Evaluation of Reactor Pressure Vessel Bottom Head without Penetration Nozzles in Core Melting Accident (노심용융사고 시 관통노즐이 제거된 원자로용기 하부헤드의 구조 건전성 평가)

  • Lee, Yun Joo;Kim, Jong Min;Kim, Hyun Min;Lee, Dae Hee;Chung, Chang Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • In this paper, structural integrity evaluation of reactor pressure vessel bottom head without penetration nozzles in core melting accident has been performed. Considering the analysis results of thermal load, weight of molten core debris and internal pressure, thermal load is the most significant factor in reactor vessel bottom head. The failure probability was evaluated according to the established failure criteria and the evaluation showed that the equivalent plastic strain results are lower than critical strain failure criteria. Thermal-structural coupled analyses show that the existence of elastic zone with a lower stress than yield strength is in the middle of bottom head thickness. As a result of analysis, the elastic zone became narrow and moved to the internal wall as the internal pressure increases, and it is evaluated that the structural integrity of reactor vessel is maintained under core melting accident.

A Study on Mechanical Properties of High Strength Concrete Performed by Full Scaled Mock-up Test (1:1 실부재 Mock-up Test를 통한 고강도 콘크리트의 역학적 특성에 관한 연구)

  • Moon, Hyung-Jae;Seok, Won-Kyun;Park, Soon-Jeon;Lee, Joo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.981-984
    • /
    • 2008
  • The super tall building above 100 floors is required that each floor's height is more than 4 meters, and each core wall's thickness is more than 60cm. Therefore, for the successive accomplishment of super tall building, the full scale mock-up test was required. The test results are as follows; Real strength of core wall was satisfied with design strength at 28 days regardless of types of strength, and according to the consolidation effect, lower part's strength was a little higher than upper part's strength. Lateral force of HSC was evaluated with max. $4.5ton/m^2$, and hydration temperature of mock-up test was evaluated that maximun heat of central part revealed about $80^{\circ}C$ at 70MPa and $65^{\circ}C$ at 50MPa, and, the difference between inner and outter part revealed about $30^{\circ}C$ at 70MPa and $12^{\circ}C$ at 50MPa. Also, no crack by hydration temperature was not shown on the surface.

  • PDF

Effect of height-to-width ratio on composite wall under compression

  • Qin, Ying;Yan, Xin;Zhou, Guan-Gen;Shu, Gan-Ping
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.507-519
    • /
    • 2020
  • Double skin composite walls are increasingly popular and have been applied to many safety-related facilities. They come from the concept of composite slabs. Conventional connectors such as shear studs and binding bars were used in previous studies to act as the internal mechanical connectors to lock the external steel faceplates to the concrete core. However, the restraint effects of these connectors were sometimes not strong enough. In this research, a recently proposed unique type of steel truss was employed along the wall height to enhance the composite action between the two materials. Concrete-filled tube columns were used as the boundary elements. Due to the existence of boundary columns, the restraints of steel faceplates to the concrete differ significantly for the walls with different widths. Therefore, there is a need to explore the effect of height-to-width ratio on the structural behavior of the wall. In the test program, three specimens were designed with the height of 3000 mm, the thickness of 150 mm, and different widths, to simulate the real walls in practice. Axial compression was applied by two actuators on the tested walls. The axial behavior of the walls was evaluated based on the analysis of test results. The influences of height-to-width ratio on structural performance were evaluated. Finally, discussion was made on code-based design.

Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate

  • Kolahdouzan, Farzad;Arani, Ali Ghorbanpour;Abdollahian, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.273-287
    • /
    • 2018
  • Buckling and free vibration analysis of sandwich micro plate (SMP) integrated with piezoelectric layers embedded in orthotropic Pasternak are investigated in this paper. The refined Zigzag theory (RZT) is taken into consideration to model the SMP. Four different types of functionally graded (FG) distribution through the thickness of the SMP core layer which is reinforced with single-wall carbon nanotubes (SWCNTs) are considered. The modified couple stress theory (MCST) is employed to capture the effects of small scale effects. The sandwich structure is exposed to a two dimensional magnetic field and also, piezoelectric layers are subjected to external applied voltages. In order to obtain governing equation, energy method as well as Hamilton's principle is applied. Based on an analytical solution the critical buckling loads and natural frequency are obtained. The effects of volume fraction of carbon nanotubes (CNTs), different distributions of CNTs, foundation stiffness parameters, magnetic and electric fields, small scale parameter and the thickness of piezoelectric layers on the both critical buckling loads and natural frequency of the SMP are examined. The obtained results demonstrate that the effects of volume fraction of CNTs play an important role in analyzing buckling and free vibration behavior of the SMP. Furthermore, the effects of magnetic and electric fields are remarkable on the mechanical responses of the system and cannot be neglected.

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.