• Title/Summary/Keyword: Core type transformer

Search Result 81, Processing Time 0.026 seconds

Zero Sequence Impedance of Yg-Yg Three Phase Core Type Transformer (Yg-Yg 3상 내철형 변압기의 영상분 임피던스 분석)

  • Jo, Hyunsik;Cho, Sungwoo;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.940-945
    • /
    • 2016
  • In this paper, zero sequence equivalent circuit of Yg-Yg three phase core-type transformer is analyzed. Many problems by iron core structure of the three phase transformer due to asymmetric three phase lines, which includes line disconnection, ground fault, COS OFF, and unbalanced load are reported in the distribution system. To verify a feasibility of zero sequence impedance of Yg-Yg type three phase transformer, fault current generation in the three phase core and shell-type Yg-Yg transformer is compared by PSCAD/EMTDC when single line ground fault is occurred. As a result, shell-type transformer does not affect the flow of fault current, but core-type transformer generate an adverse effect by the zero sequence impedance. The adverse effect is explained by the zero sequence equivalent circuit of core-type transformer and Yg-Yg type three phase core-type transformer supplies a zero sequence fault current to the distribution system.

Problem Analysis by Iron Core Structure of the Transformer on Asymmetric three Phase lines and Prevention Measures (비대칭 3상 선로에서 변압기의 철심구조별 문제점 분석 및 방지대책)

  • Shin, Dong-Yeol;Yun, Dong-Hyun;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1536-1541
    • /
    • 2012
  • The study analyzed problems by iron core structure of the three phased transformer on asymmetric three phase lines, which included line disconnections, ground faults, COS OFF, and unbalanced loads on the power distribution system. In particular, by analyzing PT combustion cases within the MOF, the study was able to analyze the combustion cause of the core-type transformer and its effect on the system, conduct simulations and practice demonstrations on the characteristics for each iron core structure of the three phase transformer using PSCAD/EMTDC, and suggest measures to prevent the combustion of the core-type transformer.

Design and Analysis of A Rectangular Type Core for A Contactless Power Transmission system (비접촉 진력전송 시스템을 위한 'ㅁㅓ'형 코어 설계 및 분석)

  • Jin, Kang-Hwan;Kim, Ji-Min;Kim, Soo-Hong;Kim, Eun-Soo;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • In the transformer that is used for the contactless power transmission system, the primary and secondary sides are separated structurally unlike general transformers. When the contactless transformer is built, it forms relatively bigger air gap than the general transformer. Thus it is difficult to transfer energy from the primary side input to the secondary side output with high power efficiently because of low coupling coefficient. This paper proposes a contactless transformer using the rectangular type core that maintains high coupling coefficient even when it has relatively large air gap. The performance characteristics of the proposed transformer are compared with the transformer using general EE core to the air gap variation. The proposed contactless system using rectangular type core and dc-dc full bridge converter, and the system using EE core type and dc-dc full bridge converter are respectively implemented and their performance characteristics are verified by the simulation and experiment.

Development of several hundred kV Air Core pulse transformer (수백 kV급 공심형 펄스 변압기 개발)

  • Kim, S.C.;Park, S.S.;Kim, S.H.;Heo, H.;Nam, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2132-2135
    • /
    • 2005
  • Cylindrical type air core pulse transformers capable of passing high voltage and energy pulse waveforms with high efficiency and low distortion require a much more delicate design balance of physical dimensions and electrical parameters than iron or ferrite core units. The structure of an air core high voltage pulse transformer is relatively simple, but considerable attention is needed to prevent breakdown between transformer windings. Since the thickness of the windings in spiral type is on the order of sub-millimeter, field enhancement at the edge of the windings is very high. It is, therefore, important to find proper electrical insulation Parameter to make the system compact. Several shapes of the winding are considered for air core pulse transformer development. In this paper, we are described design procedure, parameters measure and experiment results of air core type HV pulse transformer.

  • PDF

A Study on the Transformer Design considering the Inrush Current Reduction in the Arc Welding Machine

  • Kim, In-Gun;Liu, Huai-Cong;Cho, Su-Yeon;Lee, Ju
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.374-378
    • /
    • 2016
  • The transformer used in an inverter type arc welding machine is designed to use high frequency in order to reduce its size and cost. Also, selecting core materials that fit frequency is important because core loss increases in a high frequency band. An inrush current can occur in the primary coil of transformer during arc welding and this inrush current can cause IGBT, the switching element, to burn out. The transformer design was carried out in $A_P$ method and amorphous core was used to reduce the size of transformer. In addition, sheet coil was used for primary winding and secondary winding coil considering the skin effect. This paper designed the transformer core with an air gap to prevent IGBT burnout due to the inrush current during welding and proposed the optimum air gap length.

Analysis on Hysteresis Characteristics of a Transformer Type Superconducting Fault Current Limiter (변압기형 초전도전류제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2010
  • The transformer is expected to be an essential component of a superconducting fault current limiter (SFCL) for both the increase of its voltage ratings and the simultaneous quench due to different critical current between high-$T_C$ superconducting (HTSC) elements comprising the SFCL. However, in order to perform the effective current limiting operation of the SFCL, the design for the SFCL considering the hysteresis characteristics of the iron core is required. In this paper, the influence of the hysteresis characteristics of the iron core comprising the transformer type SFCL on its current limiting characteristics was investigated. Through the comparative analysis on the hysteresis curves due to the ratio of the turn number between the 1st and the 2nd windings of the transformer, the proper design condition for the ratio of the turn number to achieve the effective current limiting operation of the transformer type SFCL could be obtained.

Choice technique develovement of transformer core (변압기 코아의 선정 기술 개발)

  • Lee, O.K.;Kim, S.Y.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1604-1606
    • /
    • 2003
  • In this paper, investigated the core of transformer of high power factor and high effectiveness about design and choice technology. Transformer that use existent general core and material is high no-load loss power. Presented core choice method that can reduce loss. Could do to reduce loss according to choice technology of use material more than about 10 (%). Presented classification and check list by Core's type.

  • PDF

Optimal Design considering Magnetic Saturation Characteristic of Current Transformers for the Overcurrent Warning Circuit (과전류 경고 회로용 변류기의 자기포화 특성을 고려한 최적 설계)

  • Kim, Sun-Jong;Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.781-786
    • /
    • 2015
  • In this paper, we analyzed characteristic of window type current transformer and we performed the optimal design consider to the loss; in order to design the current transformer figured signal of overcurrent warning circuit. The core size of window type current transformer was determined by the secondary coil turns. We analyzed current waveform, which is appeared by the number of coil turns on the core, we made sure the relation of secondary coil turns and load resistance in order to improve the non-sinusoidal wave by the flux saturation of the current transformer core. Additionally, we did improvement of the accuracy and optimal design through the transformation of the inner diameter and the stack length when the outer diameter of core is sustaining.

Power Loss Analysis according to Winding Array Method of High Frequency Transformer (고주파 트랜스포머의 권선배열에 기법 따른 손실해석)

  • Yoon, Shin-Yong;Kim, IL-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.15-19
    • /
    • 2005
  • This paper analyzed the power loss characteristics according to winding thickness and winding method of high frequency transformer. Power loss was analyzed by PExprt using FEM tool. The ferrite core model for analysis be used the EE10 type of TDK cop.. Transformer model objected flyback transformer type applied to flyback converter/inverter. Therefore, analysis results of loss were obtained from inner parameters of DC, AC resistance, leakage inductance, copper loss, core loss, and temperature etc.

Analysis on Characteristics of Core and Winding Vibration in Cast Resin Transformer (몰드변압기 철심과 권선 진동 특성분석)

  • Kim, Chong-Min;Choi, Myung-Il;Kim, Young-Seog;Bang, Sun-Bae;Shong, Kil-Mok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.52-59
    • /
    • 2012
  • In this paper, The cast resin transformer's vibration is measured using noncontact raser vibrometer(LV110D). The vibration characteristics of transformer windings and core are analyzed for relation between vibration magnitude and cause. Using the analysis results, the technique is presented to diagnose cast resin transformer. which is able to diagnose transformer' deformation in winding and core geometry. The magnetostriction and electromagnetic force act on the core and windings, causing them to vibrate. The vibration from windings and core penetrates into transformer cast resin and reaches the outside walls. The fundamental frequency of the core and windings vibration signal is twice that of the power frequency(120Hz). The results show that the magnitude of core vibration is linear to driving voltage amplitude and magnitude of windings vibration is increased to loading current under the some level and then stabilized.