• Title/Summary/Keyword: Core simulator

Search Result 171, Processing Time 0.031 seconds

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Uncertainty analysis of heat transfer of TMSR-SF0 simulator

  • Jiajun Wang;Ye Dai;Yang Zou;Hongjie Xu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.762-769
    • /
    • 2024
  • The TMSR-SF0 simulator is an integral effect thermal-hydraulic experimental system for the development of thorium molten salt reactor (TMSR) program in China. The simulator has two heat transport loops with liquid FLiNaK. In literature, the 95% level confidence uncertainties of the thermophysical properties of FLiNaK are recommended, and the uncertainties of density, heat capacity, thermal conductivity and viscosity are ±2%, ±10, ±10% and ±10% respectively. In order to investigate the effects of thermophysical properties uncertainties on the molten salt heat transport system, the uncertainty and sensitivity analysis of the heat transfer characteristics of the simulator system are carried out on a RELAP5 model. The uncertainties of thermophysical properties are incorporated in simulation model and the Monte Carlo sampling method is used to propagate the input uncertainties through the model. The simulation results indicate that the uncertainty propagated to core outlet temperature is about ±10 ℃ with a confidence level of 95% in a steady-state operation condition. The result should be noted in the design, operation and code validation of molten salt reactor. In addition, more experimental data is necessary for quantifying the uncertainty of thermophysical properties of molten salts.

A Study of Trace-driven Simulation for Multi-core Processor Architectures (멀티코어 프로세서의 명령어 자취형 모의실험에 대한 연구)

  • Lee, Jong-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.9-13
    • /
    • 2012
  • In order to overcome the complexity and power problems of superscalar processors, the multi-core architecture has been prevalent recently. Although the execution-driven simulation is wide spread, the trace-driven simulation has speed advantages over the execution-driven simulation. We present a methodology to simulate multi-core architecture using trace-driven simulator. Using SPEC 2000 benchmarks as input, the trace-driven simulation has been performed for the cores ranging from 2 to 16 extensively. As a result, the 16-core processor resulted in 4.1 IPC and 13.3 times speed up over single-core processor on the average.

Development of High Efficiency Gas Turbine/Fuel Cell Hybrid Power Generation System (가스터빈/연료전지 혼합형 고효율 발전시스템 개발)

  • Kim Jae Hwan;Park Poo Min;Yang Soo Seok;Lee Dae Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.243-247
    • /
    • 2005
  • This paper describes an on-going national R&D program for the development of a gas turbine/fuel cell hybrid power generation system and related R&D activities. The final goal of this program is to develop a 200kW-c1ass gas turbine/fuel cell hybrid power generation system and achieve high efficiency over $60\%$ (AC/LHV). In the first phase of the development, a sub-scaled 60kW-class hybrid system based on the 50kW-class microturbine and the 5kW SOFC will be developed for the purpose of concept proof of the hybrid system. Core components such as the microturbine and the SOFC system are being developed and parallel preparation for system integration is being carried out. Before the core components are assembled in the final system. operating characteristics of a hybrid system are investigated from a simulated system where a turbocharger (microturbine simulator) and a modified fuel cell burner test facility (fuel cell simulator) are employed. The 60kW demonstration unit will be built up and operated to provide the valuable information for the preparation of the final full scale 200kW hybrid system.

  • PDF

A Study on the Development of EV Powertrain System Simulator for Education and Training (교육훈련용 EV 동력 시스템 시뮬레이터 개발에 대한 연구)

  • Dong-June Shin
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2023
  • The biggest core task in the new modern automobile industry lies in the development of eco-friendly vehicles with the goal of 0% emissions by the EU by 2035. Accordingly, in an era where the industry is rapidly changing with electric vehicles, education and training on EV electric vehicles are urgently needed. In this study, by developing a core EV powertrain system simulator excluding the chassis platform (body, tire, etc.) used identically to existing internal combustion locomotives, Understand the EV powertrain system, including mechanical engineering, electrical engineering, and electronic engineering applications. Through this course, we intend to use it as a medium to develop engineering and convergence development capabilities.

A Study on Cycle Based Simulator of a 32 bit floating point DSP (32비트 부동소수점 DSP의 Cycle Based Simulator에 관한 연구)

  • 우종식;양해용;안철홍;박주성
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.31-38
    • /
    • 1998
  • This paper deals with CBS(Cycle Base Simulator) design of a 32 bit floating point DSP(Digital Signal Processor). The CBS has been developed for TMS320C30 compatible DSP and will be used to confirm the architecture, functions of sub-blocks, and control signals of the chip before the detailed logic design starts with VHDL. The outputs from CBS are used as important references at gate level design step because they give us control signals, output values of important blocks, values from internal buses and registers at each pipeline step, which are not available from the commercial simulator of DSP. In addition to core functions, it has various interfaces for efficient execution and convenient result display, CBS is verified through comparison with results from the commercial simulator for many application algorithms and its simulation speed is as fast as several tenth of that of logic simulation with VHDL. CBS in this work is for a specific DSP, but the concept may be applicable to other VLSI design.

  • PDF

Development of Ship-Handling Simulator Web Framework (선박운항 시뮬레이터용 웹 프레임워크 개발에 관한 연구)

  • Kim, Hye-Jin;Oh, Jaeyong;Park, Sekil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.146-152
    • /
    • 2017
  • This paper proposes the ship-handling simulator framework using web technology to solve the complexity and non-scalability problems of a common simulator system. We analyze the essential functions of the existing simulator system, and selects web technologies to replace them. Based on this framework, we implemented core technologies for server and client system, and integrated a prototype of a ship-handling simulator system that can be accessed from a web browser. The prototype has verified that the simulation service can be used by multiple users at the same time without being restricted by time and place through the evaluation test, and it is hoped that it can be applied to various simulation fields in the future.

Structural Safety Analysis of a Spherical Flight Simulator Designed with a GFRP-Foam Sandwich Composite (GFRP-폼 샌드위치 복합재료로 설계된 구체 비행 시뮬레이터의 구조 안정성 평가)

  • Hong, Chae-Young;Ji, Wooseok
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.279-283
    • /
    • 2019
  • A flight training simulator of a fully spherical configuration is being developed to precisely and quickly control six degrees of freedom (Dof) motions especially with unlimited rotations. The full-scale simulator should be designed with a lightweight material to reduce inertial effects for fast and stable feedback controls while no structural failure is ensured during operations. In this study, a sandwich composite consisting of glass fiber reinforced plastics and a foam core is used to obtain high specific strengths and specific stiffnesses. T-type stainless steel frames are inserted to minimize the deformation of the sphere curvature. Finite element analysis is carried out to evaluate structural safety of the simulator composed of the sandwich sphere and steel frames. The analysis considers the weights of the equipment and trainee and it is assumed to be 200 kg. Gravity acceleration is also considered. The stresses and displacement acting on the simulator are calculated and the safety is assessed under two different situations.

Development of Microscale RF Chip Inductors for Wireless Communication Systems (무선통신시스템을 위한 극소형 RF 칩 인덕터의 개발)

  • 윤의중;김재욱;정영창;홍철호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.17-23
    • /
    • 2003
  • In this study, microscale, high-performance, solenoid-type RF chip inductors were investigated. The size of the RF chip inductors fabricated in this work was 1.0${\times}$0.5${\times}$0.5㎣. The materials (96% Al2O3) and shape (I-type) of the core were determined by a Maxwell three-dimensional field simulator to maximize the performance of the inductors. The copper (Cu) wire with 40${\mu}{\textrm}{m}$ diameter was used as the coils. High frequency characteristics of the inductance (L), quality-factor (Q), and capacitance (C) of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). The inductors developed have inductances of 11 to 39 nH and quality factors of 28 to 50 over the frequency ranges of 250MHz to 1 GHz, and show results comparable to those measured for the inductors prepared by CoilCraf $t^{Tm}$ that is one of the best chip inductor company in the world. The simulated data predicted the high-frequency data of the L, Q, and C of the inductors developed well.l.