• 제목/요약/키워드: Core simulation

검색결과 1,272건 처리시간 0.024초

퍼셉트론을 이용하는 멀티코어 프로세서의 성능 연구 (A Performance Study of Multi-Core Processors with Perceptrons)

  • 이종복
    • 전기학회논문지
    • /
    • 제63권12호
    • /
    • pp.1704-1709
    • /
    • 2014
  • In order to increase the performance of multi-core system processor architectures, the multi-thread branch predictor which speculatively fetches and allocates threads to each core should be highly accurate. In this paper, the perceptron based multi-thread branch predictor is proposed for the multi-core processor architectures. Using SPEC 2000 benchmarks as input, the trace-driven simulation has been performed for the 2 to 16-core architectures employing perceptron multi-thread branch predictor extensively. Its performance is compared with the architecture which utilizes the two-level adaptive multi-thread branch predictor.

A High Birefringent Polymer Terahertz Waveguide: Suspended Elliptical Core Fiber

  • Wang, Jingli;Chen, Heming;Shi, Weihua
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.453-458
    • /
    • 2014
  • A novel high birefringent polymer terahertz (THz) fiber with a suspended elliptical core is proposed in this paper. The introduction of an elliptical core can enhance asymmetry to realize high mode birefringence, and a large porous outer cladding effectively isolates the core-guided mode from interacting with the surrounding environment. A full-vector finite element method(FEM) is used to analyze the characteristics of the THz fiber. Simulation results show that the suspended elliptical fiber exhibits high mode birefringence on a level of $10^{-2}$ over a wide frequency range, and an extremely large mode birefringence(${\approx}0.06226$) is obtained when ellipticity is 0.2. Moreover, a suspended hollow elliptical core fiber is also discussed for the purpose of lower loss, however high mode birefringence and low relative absorption loss can not coexist in such a kind of fiber.

적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어 (Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer)

  • 정동화;박기태;이홍균
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

공심슬롯 원통형 선형 BLDC 전동기의 설계 및 특성 고찰 (Design and Characteristics Investigation of Air-core Tubular Linear BLDC Motor)

  • 문지우;조윤현
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.603-609
    • /
    • 2008
  • Slotless linear brushless DC motor are widely used in precision machine applications because of their advantages such as low of detent force, negligible iron loss. But they have a disadvantage such as low thrust density, thrust ripple, and excessive use of permanent magnet materials. These lead to undesirable performance and high production cost. In this paper, we deal with the design and characteristics investigation of a air-core tubular linear brushless DC(TLBLDC) motor with air-core stator and permanent magnet mover. And to investigate the static and dynamic characteristics of air-core TLBLDC motor, the prototype machine is manufactured and analyzed by F.E.M. and Matlab simulink simulations. Especially, dynamic characteristics of air-core TLBLDC motor driven with 6 step inverter are simulated by F.E.M.coupling with external circuit and Matlab simulink program, and measured for the prototype motor. The simulation results are compared to the experimental results such as current waves, thrust and speed curve.

Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets

  • Zhang, Yonggang;Wang, Yonghong;Zhao, Yuanyuan
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.369-383
    • /
    • 2021
  • This article deals with the frequency analysis of viscoelastic sandwich disk with graphene nano-platelets (GPLs) reinforced viscoelastic concrete (GPLRVC) face sheets and honeycomb core. The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified Halpin-Tsai model are engaged to provide the effective material constant of the concrete. By employing Hamilton's principle, the governing equations of the structure are derived and solved with the aid of the Generalize Differential Quadrature Method (GDQM). In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Afterward, a parametric study is carried out to investigate the effects of the outer to inner radius ratio, hexagonal core angle, thickness to length ratio of the concrete, the weight fraction of GPLs into concrete, and the thickness of honeycomb core to inner radius ratio on the frequency of the viscoelastic sandwich disk with honeycomb core and FG-GPLRVC face sheet.

SIMULATION OF CORE MELT POOL FORMATION IN A REACTOR PRESSURE VESSEL LOWER HEAD USING AN EFFECTIVE CONVECTIVITY MODEL

  • Tran, Chi-Thanh;Dinh, Truc-Nam
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.929-944
    • /
    • 2009
  • The present study is concerned with the extension of the Effective Convectivity Model (ECM) to the phase-change problem to simulate the dynamics of the melt pool formation in a Light Water Reactor (LWR) lower plenum during hypothetical severe accident progression. The ECM uses heat transfer characteristic velocities to describe turbulent natural convection of a melt pool. The simple approach of the ECM method allows implementing different models of the characteristic velocity in a mushy zone for non-eutectic mixtures. The Phase-change ECM (PECM) was examined using three models of the characteristic velocities in a mushy zone and its performance was compared. The PECM was validated using a dual-tier approach, namely validations against existing experimental data (the SIMECO experiment) and validations against results obtained from Computational Fluid Dynamics (CFD) simulations. The results predicted by the PECM implementing the linear dependency of mushy-zone characteristic velocity on fluid fraction are well agreed with the experimental correlation and CFD simulation results. The PECM was applied to simulation of melt pool formation heat transfer in a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lower plenum. The study suggests that the PECM is an adequate and effective tool to compute the dynamics of core melt pool formation.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

32 Bit RISC Core modeling using SystemC

  • 최홍미;박성모
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.325-328
    • /
    • 2002
  • In this paper, we present a SystemC model of a 32-Bit RISC core wi)ich is based on the ARMTTDMI architecture. The RISC core model was first modeled in C for architecture verification and then refined down to a level that allows concurrent behavior lot hardware timing using the SystcmC class library. It was driven in timed functional level that uses handshake protocol. It was compiled using standard C++ compiler. The functional simulation result was verified by comparing the contents of memory, the result of execution with the result from the ARMulator of ADS(Arm Developer Suite).

  • PDF

On-line Generation of Three-Dimensional Core Power Distribution Using Incore Detector Signals to Monitor Safety Limits

  • Jang, Jin-Wook;Lee, Ki-Bog;Na, Man-Gyun;Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.528-539
    • /
    • 2004
  • It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the linear power density (LPD) and the departure from nucleate boiling ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 Cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation.

Neutronics analysis of TRIGA Mark II research reactor

  • Rehman, Haseebur;Ahmad, Siraj-ul-Islam
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.35-42
    • /
    • 2018
  • This article presents clean core criticality calculations and control rod worth calculations for TRIGA (Training, Research, Isotope production-General Atomics) Mark II research reactor benchmark cores using Winfrith Improved Multi-group Scheme-D/4 (WIMS-D/4) and Program for Reactor In-core Analysis using Diffusion Equation (PRIDE) codes. Cores 133 and 134 were analyzed in 2-D (r, ${\theta}$) and 3-D (r, ${\theta}$, z), using WIMS-D/4 and PRIDE codes. Moreover, the influence of cross-section data was also studied using various libraries based on Evaluated Nuclear Data File (ENDF/B-VI.8 and VII.0), Joint Evaluated Fission and Fusion File (JEFF-3.1), Japanese Evaluated Nuclear Data Library (JENDL-3.2), and Joint Evaluated File (JEF-2.2) nuclear data. The simulation results showed that the multiplication factor calculated for all these data libraries is within 1% of the experimental results. The reactivity worth of the control rods of core 134 was also calculated with different homogenization approaches. A comparison was made with experimental and reported Monte Carlo results, and it was found that, using proper homogenization of absorber regions and surrounding fuel regions, the results obtained with PRIDE code are significantly improved.