• Title/Summary/Keyword: Core simulation

Search Result 1,294, Processing Time 0.03 seconds

Prediction of Positions of Gas Defects Generated from Core (중자에서 발생한 가스 결함 위치 예측)

  • Matsushita, Makoto;Kosaka, Akira;Kanatani, Shigehiro
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Hydraulic units are important components of agricultural and construction machinery, and thus require high-quality castings. However, gas defects occurring inside the sand cores of the castings due to the resin used is a problem. This study therefore aimed to develop a casting simulation method that can clarify the gas defect positions. Gas defects are thought to be caused by gas generated after the molten metal fills up the mold cavity. The gas constant is the most effective factor for simulating this gas generated from sand cores. It is calculated by gas generating temperature and analysis of composition in the inert gas atmosphere modified according to the mold filling conditions of molten metal. It is assumed that gases generated from the inside of castings remain if the following formula is established. [Time of occurrence of gas generation] + [Time of occurrence of gas floating] > [Time of occurrence of casting surface solidification] The possibility of gas defects is evaluated by the time of occurrence of gas generation and gas floating calculated using the gas constant. The residual position of generated gases is decided by the closed loops indicating the final solidification location in the casting simulation. The above procedure enables us to suggest suitable casting designs with zero gas defects, without the need to repeat casting tests.

Analysis of Performance, Energy-efficiency and Temperature for 3D Multi-core Processors according to Floorplan Methods (플로어플랜 기법에 따른 3차원 멀티코어 프로세서의 성능, 전력효율성, 온도 분석)

  • Choi, Hong-Jun;Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • The KIPS Transactions:PartA
    • /
    • v.17A no.6
    • /
    • pp.265-274
    • /
    • 2010
  • As the process technology scales down and integration densities continue to increase, interconnection has become one of the most important factors in performance of recent multi-core processors. Recently, to reduce the delay due to interconnection, 3D architecture has been adopted in designing multi-core processors. In 3D multi-core processors, multiple cores are stacked vertically and each core on different layers are connected by direct vertical TSVs(through-silicon vias). Compared to 2D multi-core architecture, 3D multi-core architecture reduces wire length significantly, leading to decreased interconnection delay and lower power consumption. Despite the benefits mentioned above, 3D design technique cannot be practical without proper solutions for hotspots due to high temperature. In this paper, we propose three floorplan schemes for reducing the peak temperature in 3D multi-core processors. According to our simulation results, the proposed floorplan schemes are expected to mitigate the thermal problems of 3D multi-core processors efficiently, resulting in improved reliability. Moreover, processor performance improves by reducing the performance degradation due to DTM techniques. Power consumption also can be reduced by decreased temperature and reduced execution time.

Shake table responses of an RC low-rise building model strengthened with buckling restrained braces at ground story

  • Lee, Han Seon;Lee, Kyung Bo;Hwang, Kyung Ran;Cho, Chang Seok
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.703-731
    • /
    • 2013
  • In order to verify the applicability of buckling restrained braces (BRB's) and fiber reinforced polymer (FRP) sheets to the seismic strengthening of a low-rise RC building having the irregularities of a soft/weak story and torsion at the ground story, a series of earthquake simulation tests were conducted on a 1:5 scale RC building model before, and after, the strengthening, and these test results are compared and analyzed, to check the effectiveness of the strengthening. Based on the investigations, the following conclusions are made: (1) The BRB's revealed significant slips at the joint with the existing RC beam, up-lifts of columns from RC foundations and displacements due to the flexibility of foundations, and final failure due to the buckling and fracture of base joint angles. The lateral stiffness appeared to be, thereby, as low as one seventh of the intended value, which led to a large yield displacement and, therefore, the BRB's could not dissipate seismic input energy as desired within the range of anticipated displacements. (2) Although the strengthened model did not behave as desired, great enhancement in earthquake resistance was achieved through an approximate 50% increase in the lateral resistance of the wall, due to the axial constraint by the peripheral BRB frames. Finally, (3) whereas in the original model, base torsion was resisted by both the inner core walls and the peripheral frames, the strengthened model resisted most of the base torsion with the peripheral frames, after yielding of the inner core walls, and represented dual values of torsion stiffness, depending on the yielding of core walls.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

Multi -Core Transactional Memory for High Contention Parallel Processing (집중 충돌 병렬 처리를 위한 효율적인 다중 코어 트랜잭셔널 메모리)

  • Kim, Seung-Hun;Kim, Sun-Woo;Ro, Won-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • The importance of parallel programming seriously emerges ever since the modern microprocessor architecture has been shifted to the multi-core system. Transactional Memory has been proposed to address synchronization which is usually implemented by using locks. However, the lock based synchronization method reduces the parallelism and has the possibility of causing deadlock. In this paper, we propose an efficient method to utilize transactional memory for the situation which has high contention. The proposed idea is based on the theoretical analysis and it is verified with simulation results. The simulation environment has been implemented using HTM(Hardware Transactional Memory) systems. We also propose a model of the dining philosopher problem to discuss the efficient resource management using the transactional memory technique.

A Study on Effects of the Cure Pressure for the Improvement of the Electrical Performance of the Sandwich Type Radome (샌드위치형 레이돔의 전기적 성능개선 위한 성형압력 영향성 연구)

  • Lee, Sang-Min;Seo, Hyun-Soo;Hong, Jun-Pyo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.299-312
    • /
    • 2015
  • Purpose: This paper analyzes the phenomenon on the degradation of the electrical performance by the pressure in the manufacturing process of sandwich type radomes. Methods: This paper consists of two steps to analyze the relation between the electrical performance and the pressure. First, the thickness of the core of the flat panels which were fabricated with different pressure was measured with the microscope, and then the electrical performance of the flat panels was analyzed with simulation and experiment. Based on the results of the electrical performance and the measured thickness with respect to the flat panels, the relation between the electrical performance and the applied pressure in the manufacturing process was analyzed. Results: The simulated and measured results with respect to the flat panel shows that the high pressure results in the nonuniform thickness of the core, which is applied to the radome fabrication. As a result, the degradation of the electrical performance occurs because the unintended scattered field is generated as the electromagnetic wave transmits (or impinges upon) the radome. Furthermore, we observed that the electrical performance of both the flat panel and the radome got worse as the high pressure was applied. Conclusion: Through simulation and experiment, therefore, it is demonstrated that for the high pressure in the manufacturing process the nonuniform thickness of the core increases and results in the degradation of the electrical performance of the radome.

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.

RADIOLOGICAL CHARACTERISTICS OF DECOMMISSIONING WASTE FROM A CANDU REACTOR

  • Cho, Dong-Keun;Choi, Heui-Joo;Ahmed, Rizwan;Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.583-592
    • /
    • 2011
  • The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be $1.04{\times}10^{16}$ Bq, $2.09{\times}10^3$ W, $5.31{\times}10^{14}\;m^3$-water, $4.69{\times}10^5$ kg, and $7.38{\times}10^1\;m^3$, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.

Optical Properties of Ag@Fe3O4 Core-Shell Nanoparticles (Ag@Fe3O4 코어-쉘 나노입자의 광학적 특성)

  • Song, Younseong;Koh, Kwangnak;Kim, Kyujung;Lee, Jaebeom
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.97-102
    • /
    • 2017
  • In this paper, we investigate the optical properties of $Ag@Fe_3O_4$ nanoparticles (NPs) composed of a plasmonic core and a magnetic shell. As the $Fe_3O_4$ shell with high refractive index (~2.42) is formed on the surface of the silver NPs having diameter of 60 nm, the wavelength of the localized surface-plasmon resonance (LSPR) is shifted from 420 nm to 650 nm, a so-called "redshift". Furthermore, through the use of three simulation models ($Ag@Fe_3O_4$ NP, $Fe_3O_4$ shell NP, and silver NP), the peak at 410 nm is seen to be the result of scattering by the $Fe_3O_4$ shell with 60 nm thickness, which would be useful in comprehending the complex optics in various nanoscale assemblies using similar NPs.

The Capacity of Multi-Valued Single Layer CoreNet(Neural Network) and Precalculation of its Weight Values (단층 코어넷 다단입력 인공신경망회로의 처리용량과 사전 무게값 계산에 관한 연구)

  • Park, Jong-Joon
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.354-362
    • /
    • 2011
  • One of the unsolved problems in Artificial Neural Networks is related to the capacity of a neural network. This paper presents a CoreNet which has a multi-leveled input and a multi-leveled output as a 2-layered artificial neural network. I have suggested an equation for calculating the capacity of the CoreNet, which has a p-leveled input and a q-leveled output, as $a_{p,q}=\frac{1}{2}p(p-1)q^2-\frac{1}{2}(p-2)(3p-1)q+(p-1)(p-2)$. With an odd value of p and an even value of q, (p-1)(p-2)(q-2)/2 needs to be subtracted further from the above equation. The simulation model 1(3)-1(6) has 3 levels of an input and 6 levels of an output with no hidden layer. The simulation result of this model gives, out of 216 possible functions, 80 convergences for the number of implementable function using the cot(x) input leveling method. I have also shown that, from the simulation result, the two diverged functions become implementable by precalculating the weight values. The simulation result and the precalculation of the weight values give the same result as the above equation in the total number of implementable functions.