• Title/Summary/Keyword: Core shell structure

Search Result 263, Processing Time 0.024 seconds

Influence of the Composition of Shell Layers on the Photoluminescence of Cu0.2InS2 Semiconductor Nanocrystals with a Core-shell Structure

  • Kim, Young-Kuk;Ahn, Si-Hyun;Cho, Young-Sang;Chung, Kookchae;Choi, Chul-Jin;Shin, Pyung-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.900-904
    • /
    • 2011
  • We have synthesized core-shell structured nanocrystals based on chalcopyrite-type $Cu_{0.2}InS_2$. The photoluminescence of the nanocrystals shows a significant blueshift in the emission wavelength by shell capping with ZnS layers. This shift can be explained with the compressive stress to core nanocrystals applied by the formation of a ZnS shell layer with a large lattice mismatch with the core. In this study, the emission wavelength could be tuned by changing the composition of the shell layers. Nanocrystals with emission wavelength ranging from 575 nm through 630 nm were synthesized by varying the portion of cadmium compared with zinc in the shell layers.

Preparation and Characterization of $CaCO_3$ Encapsulation by PMMA Core-Shell latex (PMMA와 캡슐화된 $CaCO_3$ Core-Shell 라텍스 제조와 물성연구)

  • Lim, Jong-Min;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.303-315
    • /
    • 2003
  • Inorganic/organic composite particles were also synthesized by changing an initiator an it's concentration, concentration of an adsorbed surfactant, reaction temperature, and agitation speed in the presence of $CaCO_3$ adsorbed SDBS. The polymerization conditions were optimized according to the conversion of the core-shell composite particles. In the inorganic/organic core-shell composite particle polymerization, $CaCO_3$ absorbed surfactant SDBS of 0.5 wt % was prepared first and then core $CaCO_3$ was encapsulated by sequential emulsion polymerization using MMA, concentration of APS $3.16{\times}10^{-3}mol/L$ to minimize the formation of new PMMA particle during MMA shell polymerization. The structure characterization of the inorganic/organic core-shell particles was verified by measuring the decomposition degree of $CaCO_3$ using HCl solution. It was found that $CaCO_3$ was encapsulated by shell PMMA due to having excellent dispersion in the epoxy resin, smooth surface distinctly from spindle shape, and broad particle distribution after the capsulation.

Preparation of Al@Fe2O3 Core-Shell Composites Using Amphiphilic Graft Copolymer Template

  • Patel, Rajkumar;Kim, Sang Jin;Kim, Jin Kyu;Park, Jung Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.209-213
    • /
    • 2014
  • A graft copolymer of poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a structure-directing agent to prepare $Al@Fe_2O_3$ core-shell nanocomposites through a sol-gel process. The amphiphilic property of PVC-g-POEM allows for good dispersion of Al particles and leads to specific interaction with iron ethoxide, a precursor of $Fe_2O_3$. Secondary bonding interaction in the sol-gel composites was characterized by Fourier transform-infrared (FT-IR) spectroscopy. The well-organized morphology of $Al@Fe_2O_3$ core-shell nanocomposites was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were used to analyze the elemental composition and crystallization structure of the composites.

Sintering Behavior of Ag-Ni Electrode Powder with Core-shell Structure

  • Kim, Kyung Ho;Koo, Jun-Mo;Ryu, Sung-Soo;Yoon, Sang Hun;Han, Yoon Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.507-512
    • /
    • 2016
  • Expensive silver powder is used to form electrodes in most IT equipment, and recently, many attempts have been made to lower manufacturing costs by developing powders with Ag-Ni or Ag-Cu core-shell structures. This study examined the sintering behavior of Ag-Ni electrode powder with a core-shell structure for silicon solar cell with high energy efficiency. The electrode powder was found to have a surface similar to pure Ag powder, and cross-sectional analysis revealed that Ag was uniformly coated on Ni powder. Each electrode was formed by sintering in the range of $500^{\circ}C$ to $800^{\circ}C$, and the specimen sintered at $600^{\circ}C$ had the lowest sheet resistance of $5.5m{\Omega}/{\Box}$, which is about two times greater than that of pure Ag. The microstructures of electrodes formed at varying sintering temperatures were examined to determine why sheet resistance showed a minimum value at $600^{\circ}C$. The electrode formed at $600^{\circ}C$ had the best Ag connectivity, and thus provided a better path for the flow of electrons.

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures (금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구)

  • Lee, Hyunju;Han, Dohyun;Lee, Doohwan
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.154-162
    • /
    • 2022
  • Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

Numerical comparison between lattice and honeycomb core by using detailed FEM modelling

  • Giuseppe, Pavano
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.377-400
    • /
    • 2022
  • The aim of this work is a numerical comparison (FEM) between lattice pyramidal-core panel and honeycomb core panel for different core thicknesses. By evaluating the mid-span deflection, the shear rigidity and the shear modulus for both core types and different core thicknesses, it is possible to define which core type has got the best mechanical behaviour for each thickness and the evolution of that behaviour as far as the thickness increases. Since a specific base geometry has been used for the lattice pyramidal core, the comparison gives us the opportunity to investigate the unit cell strut angle giving the higher mechanical properties. The presented work considers a detailed FEM modelling of a standard 3-point bending test (ASTM C393/C393M Standard Practice). Detailed FEM modelling addresses to detailed discretization of cores by means of beam elements for lattice core and shell elements for honeycomb core. Facings, instead, have been modelled by using shell elements for both sandwich panels. On lattice core structure, elements of core and facings are directly connected, to better simulate the additive manufacturing process. Otherwise, an MPC-based constraint between facings and core has been used for honeycomb core structure. Both sandwich panels are entirely built of Aluminium alloy. Prior to compare the two models, the FEM sandwich panel model with lattice pyramidal core needs to be validated with 3-point bending test experimental results, in order to ensure a good reliability of the FEM approach and of the comparison. Furthermore, the analytical validation has been performed according to Allen's theory. The FEM analysis is linear static with an increasing midspan load ranging from 50N up to 500N.

Doxorubicin Release from Core-Shell Type Nanoparticles of Poly(DL-lactide-co-glycolide)-Grafted Dextran

  • Jeong, Young-Il;Choi, Ki-Choon;Song, Chae-Eun
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.712-719
    • /
    • 2006
  • In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around $50\;nm{\sim}300\;nm$ according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA. $^1H-NMR$ spectroscopy using $D_2O$ and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.

TiO2@carbon Core-Shell Nanostructure Electrodes for Improved Electrochemical Properties in Alkaline Solution

  • Kim, Do-Young;Lee, Young-Woo;Han, Sang-Beom;Ko, A-Ra;Kim, Hyun-Su;Kim, Si-Jin;Oh, Sang-Eun;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.90-94
    • /
    • 2012
  • We report nanostructure electrodes with $TiO_2$ as a core and carbon as a shell ($TiO_2$@C) for oxygen reduction in alkaline solution. The structure of core-shell electrodes is characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction method, and X-ray photoelectron microscopy. The electrochemical properties of the $TiO_2$@C electrodes are characterized using a potentiostat and compared with those of carbon supported Pt catalyst. In particular, the core-shell electrode with dominant pyridinic-N component exhibits an imporved electrocatalytic activity for oxygen reduction reaction in alkaline solution.

Core-shell Poly(D,L-lactide-co-glycolide )/Poly(ethyl 2-cyanoacrylate) Microparticles with Doxorubicin to Reduce Initial Burst Release

  • Lee, Sang-Hyuk;Baek, Hyon-Ho;Kim, Jung-Hyun;Choi, Sung--Wook
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1010-1014
    • /
    • 2009
  • Monodispersed microparticles with a poly(D,L-lactide-co-glycolide) (PLGA) core and a poly(ethyl 2-cyanoacrylate) (PE2CA) shell were prepared by Shirasu porous glass (SPG) membrane emulsification to reduce the initial burst release of doxorubicin (DOX). Solution mixtures with different weight ratios of PLGA polymer and E2CA monomer were permeated under pressure through an SPG membrane with $1.9\;{\mu}m$ pore size into a continuous water phase with sodium lauryl sulfate as a surfactant. Core-shell structured microparticles were formed by the mechanism of anionic interfacial polymerization of E2CA and precipitation of both polymers. The average diameter of the resulting microparticles with various PLGA:E2CA ratios ranged from 1.42 to $2.73\;{\mu}m$. The morphology and core-shell structure of the microparticles were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The DOX release profiles revealed that the microparticles with an equivalent PLGA:E2CA weight ratio of 1:1 exhibited the optimal condition to reduce the initial burst of DOX. The initial release rate of DOX was dependent on the PLGA:E2CA ratio, and was minimized at a 1:1 ratio.

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.