• Title/Summary/Keyword: Core parameters

Search Result 985, Processing Time 0.025 seconds

A Study of the Iron-Core Solenoid Analysis for 3 D.O.F. Motor Control with Experimental Method (3자유도 모터 제어를 위한 철심 솔레노이드 특성의 실험적 해석에 관한 연구)

  • Baek, Yoon-Su;Park, Joon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1334-1340
    • /
    • 2001
  • In this paper, the experimental modeling of the force between permanent magnet and iron-core solenoid is suggested for more accurate control of 3 D.O.F. motor using the electromagnetic force. In the case of iron-core solenoid, the general equation of solenoid cant be used simply because of its nonlinearity. Therefore, the magnetic flux density is estimated through the concept of equivalent permanent magnet. The force distribution between permanent magnet and iron-core solenoid is more dependent on the magnetization of iron core caused by the permanent magnet than any other parameters. Therefore, the equation of the force estimation between these magnetic systems can be modeled by the experimental function of the magnetization of iron core. Especially, if the distance between iron-core solenoid and permanent magnet is far enough, the force equation through experiment can be expressed from only the current of coil and the distance between iron-core solenoid and permanent magnet. It means that Coulombs law can be used for magnetic systems and it is validated through the experiment. Therefore, force calibration is performed by the concept of Coulombs law.

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

Impact resistance efficiency of bio-inspired sandwich beam with different arched core materials

  • Kueh, Ahmad B.H.;Tan, Chun-Yean;Yahya, Mohd Yazid;Wahit, Mat Uzir
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.105-117
    • /
    • 2022
  • Impact resistance efficiency of the newly designed sandwich beam with a laterally arched core as bio-inspired by the woodpecker is numerically investigated. The principal components of the beam comprise a dual-core system sandwiched by the top and bottom laminated CFRP skins. Different materials, including hot melt adhesive, high-density polyethylene (HDPE), acrylonitrile butadiene styrene (ABS), epoxy resin (EPON862), aluminum (Al6061), and mild carbon steel (AISI1018), are considered for the side-arched core layer of the beam for impact efficiency assessment. The aluminum honeycomb takes the role of the second core. Contact force, stress, damage formation, and impact energy for beams equipped with different materials are examined. A diversity in performance superiority is noticed in each of these indicators for different core materials. Therefore, for overall performance appraisal, the impact resistance efficiency index, which covers several chief impact performance parameters, of each sandwich beam is computed and compared. The impact resistance efficiency index of the structure equipped with the AISI1018 core is found to be the highest, about 3-10 times greater than other specimens, thus demonstrating its efficacy as the optimal material for the bio-inspired dual-core sandwich beam system.

Analysis of the Variation of Earth Pressures and Pore Pressures on the Interfaces of Taechong Composite Dam. (대청복합댐 접합면에 대한 토압 및 간극수압의 변동분석)

  • 임희대;김상규
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.33-44
    • /
    • 1988
  • The Taechong Dam completed in 1980 is a composite dam at which a junction was formed partly by butting the core against the end face of the concrete gravity section and partly by the core overlapping the upstream face of the concrete. In order to evaluate the performance of the junction, the interfaces between the concrete dam and core of the embankment dam were well instrumented with total pressure cells and piezometers. A nonlinear incremental finite element analysis simulating its construction behaviour was carried out under plane strain conditions. Material parameters for the core are determined from triaxial tests on the specimens, sampled in the quarry site and compacted to the field dry density at the field moisture content. Material parameters for the filter, transition materials and the rockfill are estimated from literature. When compared with the earth pressures measured at the interfaces, the analytical results show good agreement in the core, however, there are some discrepancy in the shell. A nonlinear model for pore pressure response is used successfully to predict the pore pressures at the interface in the core.

  • PDF

Flutter phenomenon in composite sandwich beams with flexible core under follower force

  • Saghavaz, Fahimeh Rashed;Payganeh, GHolamhassan;Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.615-630
    • /
    • 2021
  • The main purpose of the present work was to study the dynamic instability of a three-layered, thick composite sandwich beam with the functionally graded (FG) flexible core subjected to an axial compressive follower force. Flutter instability of a sandwich cantilever beam was analyzed using the high-order theory of sandwich beams, for the first time. The governing equations in general for sandwich beams with an FG core were extracted and could be used for all types of sandwich beams with any types of face sheets and cores. A polynomial function is considered for the vertical distribution of the displacement field in the core layer along the thickness, based on the results of the first Frosting's higher order model. The governing partial differential equations and the equations of boundary conditions of the dynamic system are derived using Hamilton's principle. By applying the boundary conditions and numerical solution methods of squares quadrature, the beam flutter phenomenon is studied. In addition, the effects of different geometrical and material parameters on the flutter threshold were investigated. The results showed that the responses of the dynamic instability of the system were influenced by the follower force, the coefficients of FGs and the geometrical parameters like the core thickness. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory. The results showed that the follower force of the flutter phenomenon threshold for long beams tends to the corresponding results in the Timoshenko beam.

Dynamic analysis of sandwich plate with viscoelastic core based on an improved method for identification of material parameters in GHM viscoelastic model

  • Mojtaba Safari;Hasan Biglari;Mohsen Motezaker
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.743-757
    • /
    • 2023
  • In this paper, the dynamic response of a simply-supported composite sandwich plate with a viscoelastic core based on the Golla-Hughes-McTavish (GHM) viscoelastic model is investigated analytically. The formulation is developed using the three-layered sandwich panel theory. Hamilton's principle has been employed to derive the equations of motion. Since classical models, like kelvin-voigt and Maxwell models, cannot express a comprehensive description of the dynamic behavior of viscoelastic material, the GHM method is used to model the viscoelastic core of the plate in this research. The main advantage of the GHM model in comparison with classical models is the consideration of the frequency-dependent characteristic of viscoelastic material. Identification of the material parameters of GHM mini-oscillator terms is an essential procedure in applying the GHM model. In this study, the focus of viscoelastic modeling is on the development of GHM parameters identification. For this purpose, a new method is proposed to find these constants which express frequency-dependent behavior characterization of viscoelastic material. Natural frequencies and loss factors of the sandwich panel based on ESL and three-layered theories in different geometrics are described at 30℃ and 90℃; also, the comparisons show that obtained natural frequencies are grossly overestimated by ESL theory. The argumentations of differences in natural frequencies are also illustrated in detail. The obtained results show that the GHM model presents a more accurate description of the plate's dynamic response by considering the frequency dependency behavior of the viscoelastic core.

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

Effect of verification core hole on tip capacity (확인코어공이 현장타설말뚝의 선단지지력에 미치는 영향)

  • Youn, Hee-Jung;Tonon, Fulvio
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.435-441
    • /
    • 2010
  • In this study, numerical simulations were carried out to investigate the effect of verification core hole on the shaft tip capacity. The verification core extreted at shaft tip may deteriorate the shaft tip capacity when the clay shales (Taylor Marl) surrounding the shaft degrades and the empty core hole remains unfilled. Series of finite element analyses were conducted using Mohr-Coulomb model with total stress material parameters that were obtained from laboratory testing. The numerical analyses indicate that the shaft tip capacity does not decrease for most cases, and the maximum reduction does not exceed 5%.

  • PDF

The study of bending and buckling behavior of sandwich structure according to design parameter variation (설계변수 변화에 따른 샌드위치 구조물의 굽힘 및 좌굴 거동에 관한 연구)

  • 한근조;안성찬;안성찬;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.841-844
    • /
    • 1997
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the buckling and bending behavior with respect to the variation of design parameters such as length, height, and thickness of honeycomb sandwich core. We found that as the density and the thickness of core become higher, the value of critical bucking load increased significantly. We found that the effect of bending stress due to critical buckling load resulted in high bending stress and the value of bending stress decreased in half according to the increase of length of core. The effect by bending stress is dominant above the portion of the intersection line between bending stress and the effect of buckling is dominant below the potion of it. We could get proper thickness ratio and density of core according to applied load conditions.

  • PDF

A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles (충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Dae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.