• Title/Summary/Keyword: Core deformation

Search Result 407, Processing Time 0.023 seconds

The Micostructural Change During the Mylonitzation of Cheongsan Granite, Korea (청산화강암의 압쇄암화작용 동안에 미구조 변화)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.125-139
    • /
    • 2015
  • Rock structural and microstructural analyses on the deformed Cheongsan granite, which is characterized by abundant feldspar megacrystals, have been carried out to understand the microstructural change during the mylonitization by ductile shear deformation. In K-feldspars, the characteristic microstructures are recognized as microkinks, microfractures, myrmekites, flame perthites, and core-and-mantle structures without the development of subgrains in outer core-zone. Microkinks are observed in both the microfractured and unmicrofractured K-feldspars and the directions of their axes are generally extended across the adjacent K-feldspar fragments bounded by microfractures. Myrmekites and flame perthites are found on the strain-localized boundaries of the microfractured K-feldspars. In plagiclases, microfractures, deformation twins and kink bands are predominant. Grain size reduction of plagioclase megacrysts also occurs by microfracturing but the core-and-mantle structures like the case of K-feldspars are uncommon in the microfractured plagioclases. The deformation twins, which overlap the igneous zoning structures, are often found in less deformed rocks. The twin lamellae in more deformed rocks generally bisect the obtuse angles of conjugate kink-band boundaries, and are microfractured or microfaulted and randomly oriented. From such characteristic microstructures, thus, it can be suggested that the micostructures during the mylonitzation of Cheongsan granite was developed as follows: production of microkinks in the K-feldspar megacrysts and of deformation twins and kink bands in the plagioclase megacrysts, and then grain-size reduction of the feldspar megacrysts through microfracturing, and then production of core-and-mantle structures (grain-size reduction of the microfractured K-feldspars through grain boundary migration), myrmekites and flame perthites in the microfractured K-feldspars.

Development of Embedded Type Sensor Module for Measuring Stress of Concrete Using Hetero-core Optical Fiber (헤테로코어 광섬유를 이용한 콘크리트 응력 측정용 매립형 센서모듈의 개발)

  • Yang, Hee-Won;Lee, Hwan-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.68-75
    • /
    • 2022
  • In this study, in order to directly evaluate the prestress of the PSC structure, a new sensor module based on the measurement of the deformation of concrete was proposed using hetero-core optical fibers and performance tests were performed. In a hetero-core optical fiber, optical loss occurs when a specific part of the transmission path is bent, and the amount of optical loss changes linearly according to the magnitude of the curvature. In order to confirm the measurement performance of the sensor module and the applicability of the optical fiber, the sensor module was deformed and the light passing through the optical fiber was converted into wattage and measured. It can be seen that the light passing through the optical fiber has a linearity of 0.9333 in relation to the deformation while generating the maximum deformation of 0.5 mm at a rate of 0.12 mm/min in a cylindrical concrete specimen with a diameter of 15 cm and a height of 35 cm in which the sensor module is embedded. Based on the results of this experiment, it is judged that it is possible to directly evaluate the prestress of a PSC structure by embedding a sensor module using a hetero-core optical fiber in the structure and measuring the compression deformation in concrete. It is judged that it can be used as useful data for the development of a sheath tube integrated sensor module to be applied to be applied to the girder model experiment.

A Study on Thermal Behavior and Reliability Characteristics of PCBs with a Carbon CCL (카본 CCL이 적용된 PCB의 열거동 및 신뢰성 특성 연구)

  • Cho, Seunghyun;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, the Thermal behavior and reliability characteristics of carbon CCL (Copper Claded Layer), which can be used as the core of HDI (High Density Interconnection) PCB (Printed Circuit Board) are evaluated through experiments and numerical analysis using CAE (Computer Aided Engineering) software. For the characterization of the carbon CCL, it is compared with the conventional FR-4 core and Heavy Cu core. From research results, the deformation amount of the flexure strength of PCB is the highest with pitch grade carbon and thermal behavior of PCB is lowest as temperature increases. In addition, TC (Thermal Cycling), LLTS (Liquid-to-Liquid Thermal Shock) and Humidity tests have been applied in the PCB with carbon core and the reliability of PCB with carbon core is confirmed through reliability tests. Also, possibility of uneven surface of the via hole and wear of the drill bit due to the carbon fibers are analyzed. surface of the via hole is uniform, the surface of the drill bit is smooth. Therefore, it is proved that the carbon CCL has the drilling workability of the same level as conventional core material.

A Study on the Characteristics of Plastic Injection Molding Using Core in Core Cooling Technology (Core in Core 냉각기술을 적용한 플라스틱 사출성형 특성에 관한 연구)

  • Choi, Yun-Seo;Park, In-Seung;Yang, Dong-Ho;Ha, Byeong-Cheol;Heo, Man-Woo;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.82-87
    • /
    • 2019
  • Recently, plastic materials have become more diversified, and the development of materials with excellent mechanical properties and plasticity has enabled wider application, miniaturization, and refinement of injection molded products. As a result, the utilization of these products in household goods, electronics, automotive parts, and aircraft parts is increasing in almost all industries. Injection molded parts are often used externally on finished commercial products. This means that the injection mold industry is very important to the value of these products. For this reason, the industry is performing research on the precision and efficiency of the injection molding process. In this study, we investigated the applicability of the core in core cooling method to the problem of product deformation due to temperature variation in existing injection mold designs. We also characterized the cooling performance of an injection mold when using this cooling method.

A Study on the Temperature Distribution and Deformation of Case in Shrinkage Fit Process(I) - Temperature Monitoring and Heat Transfer Analysis Model - (열박음 공정이 케이스의 온도분포 및 변형에 미치는 영향(I) - 온도 계측 및 열전달 해석 모델 정립 -)

  • 장경복;조상명;강성수
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.384-390
    • /
    • 2001
  • There have been many problems due to deformation in industry field. Especially, it is severe in parts with small size and thin thickness and in products that must have excellent airtightness and anti-noise. The countermeasures for this deformation in field have mainly been dependent on the rule of trial and error by operator's experience because of productivities. Systematic study about this product with deformation is also insufficient that deformation is complex problem with shape, size, material of product, joining method and conditions, etc.. It is efficient to apply CAE technique without influence on productivity to this problem. There is, however much difference between the result analyzed by CAE and appearances in working field because of the insufficiency of communication between simulator and worker and of sensing data for boundary condition in analysis. In this study, to solve this deformation problem, we intend to make a simulation model that is adapted from working conditions by tuning and feedback between sensing data and simulation results. This paper include temperature monitoring and make a heat transfer model using sensing data in product as previous step for deformation analysis. The heat transfer analysis of shrinkage fit process is considerably difficult due to contact heat transfer between case and core. To solve this contact problem, gap element is used in present study.

  • PDF

Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories

  • Hanifehlou, Sona;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.427-432
    • /
    • 2020
  • In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.

Free vibration analysis of angle-ply laminated composite and soft core sandwich plates

  • Sahla, Meriem;Saidi, Hayat;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.663-679
    • /
    • 2019
  • In this work, a simple four-variable trigonometric shear deformation model with undetermined integral terms to consider the influences of transverse shear deformation is applied for the dynamic analysis of anti-symmetric laminated composite and soft core sandwich plates. Unlike the existing higher order theories, the current one contains only four unknowns. The equations of motion are obtained using the principle of virtual work. The analytical solution is determined by solving the eigenvalue problem. The influences of geometric ratio, modular ratio and fibre angle are critically evaluated for different problems of laminated composite and sandwich plates. The eigenfrequencies obtained using the current theory are verified by comparing the results with those of other theories and with the exact elasticity solution, if any.

Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method

  • Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.35-48
    • /
    • 2018
  • In this paper, the response of a sandwich cylindrical shell over any sort of boundary conditions and under a general distributed static loading is investigated. The faces and the core are made of some isotropic materials. The faces are modeled as thin cylindrical shells obeying the Kirchhoff-Love assumptions. For the core material it is assumed to be thick and the in-plane stresses are negligible. The governing equations are derived using the principle of the stationary potential energy. Using harmonic differential quadrature method (HDQM) the equations are solved for deformation components. The obtained results primarily are compared against finite element results. Then, the effects of changing different parameters on the stress and displacement components of sandwich cylindrical shells are investigated.

Static analysis of simply supported porous sandwich plates

  • Taskin, Vedat;Demirhan, Pinar Aydan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.549-557
    • /
    • 2021
  • In this study, it is aimed to analyze the bending of porous sandwich plates using the four-variable shear deformation theory. The core of the sandwich plate is assumed to be functionally graded, and face sheets are assumed to be isotropic. The pore distribution of the sandwich plate is considered even and uneven type of porosity distribution. Displacement fields are defined with four variable shear deformation theory. Equilibrium equations of porous sandwich plates are derived from virtual displacement principle. An analytical solution is obtained by Navier's approach. Results are presented for uniformly and sinusoidally distributed loaded porous sandwich plates. Face sheet -core thickness ratio, porosity distribution, amount of porosity is investigated.

Nodal method for handling irregularly deformed geometries in hexagonal lattice cores

  • Seongchan Kim;Han Gyu Joo;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.772-784
    • /
    • 2024
  • The hexagonal nodal code RENUS has been enhanced to handle irregularly deformed hexagonal assemblies. The underlying RENUS methods involving triangle-based polynomial expansion nodal (T-PEN) and corner point balance (CPB) were extended in a way to use line and surface integrals of polynomials in a deformed hexagonal geometry. The nodal calculation is accelerated by the coarse mesh finite difference (CMFD) formulation extended to unstructured geometry. The accuracy of the unstructured nodal solution was evaluated for a group of 2D SFR core problems in which the assembly corner points are arbitrarily displaced. The RENUS results for the change in nuclear characteristics resulting from fuel deformation were compared with those of the reference McCARD Monte Carlo code. It turned out that the two solutions agree within 18 pcm in reactivity change and 0.46% in assembly power distribution change. These results demonstrate that the proposed unstructured nodal method can accurately model heterogeneous thermal expansion in hexagonal fueled cores.